No Arabic abstract
We investigate the stochastic resonance phenomena in the field-driven Ising model on small-world networks. The response of the magnetization to an oscillating magnetic field is examined by means of Monte Carlo dynamic simulations, with the rewiring probability varied. At any finite value of the rewiring probability, the system is found to undergo a dynamic phase transition at a finite temperature, giving rise to double resonance peaks. While the peak in the ferromagnetic phase grows with the rewiring probability, that in the paramagnetic phase tends to reduce, indicating opposite effects of the long-range interactions on the resonance in the two phases.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calculate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
Mapping a complex network to an atomic cluster, the Anderson localization theory is used to obtain the load distribution on a complex network. Based upon an intelligence-limited model we consider the load distribution and the congestion and cascade failures due to attacks and occasional damages. It is found that the eigenvector centrality (EC) is an effective measure to find key nodes for traffic flow processes. The influence of structure of a WS small-world network is investigated in detail.
We calculate the number of metastable configurations of Ising small-world networks which are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and we find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings.
Two new classes of networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They consist of a one-dimensional lattice backbone overlayed by a hierarchical sequence of long-distance links. Both types of networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular networks are planar, have a diameter growing as sqrt{N} with the system size N, and lead to super-diffusion with an exact, anomalous exponent d_w=1.3057581..., but possesses only a trivial fixed point T_c=0 for the Ising ferromagnet. In turn, the 4-regular networks are non-planar, have a diameter growing as ~2^[sqrt(log_2 N^2)], exhibit ballistic diffusion (d_w=1), and a non-trivial ferromagnetic transition, T_c>0. It suggest that the 3-regular networks are still quite geometric, while the 4-regular networks qualify as true small-world networks with mean-field properties. As an example of an application we discuss synchronization of processors on these networks.
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delta p sim L^{-d}$. Equivalently a ``persistence size $L^* sim p^{-1/d}$ can be defined in connection with finite-size effects. Assuming $L^* sim p^{-tau}$, simple rescaling arguments imply that $tau=1/d$. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that $tau=1/d$ implies that this transition is first-order.