No Arabic abstract
Exact and general results on the electronic states in ideal free standing films are presented. In many interesting cases, such as in FCC (001) films and in FCC (110) films, the energies of most electronic states in the film can be analytically obained from the corresponding energy band structure of the bulk. This approach can be further extended to obtain exact and general results on the electronic states in quantum wires and quantum dots.
The origin of the unusual 90^o ferroelectric / ferroelastic domains, consistently observed in recent studies on meso and nanoscale free-standing single crystals of BaTiO3 [Schilling et al., Physical Review B, 74, 024115 (2006); Schilling et al., Nano Letters, 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric, cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.
The coupling between the electrical transport properties of La2/3Sr1/3MnO3 (LSMO) thin films and structural phase transitions of SrTiO3 (STO) substrates at Ts = 105 K has been investigated. We found that the electrical resistivity of LSMO films exhibit a cusp at Ts, which is greatly amplified by tuning films to the verge of metallic and insulating phases, i.e., to the boundary of two delicate competing electronic states. Our results demonstrate that small amounts of strain can tip the subtle balance of competing interactions and tune the electronic properties in correlated electron materials.
Si dangling bonds without H termination at the interface of quasi-free standing monolayer graphene (QFMLG) are known scattering centers that can severely affect carrier mobility. In this report, we study the atomic and electronic structure of Si dangling bonds in QFMLG using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), and density functional theory (DFT) calculations. Two types of defects with different contrast were observed on a flat terrace by STM and AFM. Their STM contrast varies with bias voltage. In STS, they showed characteristic peaks at different energies, 1.1 and 1.4 eV. Comparison with DFT calculations indicates that they correspond to clusters of 3 and 4 Si dangling bonds, respectively. The relevance of these results for the optimization of graphene synthesis is discussed.
We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000 C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from 3 W/mK to 61 W/mK at room temperature. The cross-plane thermal conductivity, Kc, revealed an interesting opposite trend of decreasing to a very small value of 0.09 W/mK in the reduced graphene oxide films annealed at 1000 C. The obtained films demonstrated an exceptionally strong anisotropy of the thermal conductivity, K/Kc ~ 675, which is substantially larger even than in the high-quality graphite. The electrical resistivity of the annealed films reduced to 1 - 19 Ohms/sq. The observed modifications of the in-plane and cross-plane thermal conductivity components resulting in an unusual K/Kc anisotropy were explained theoretically. The theoretical analysis suggests that K can reach as high as ~500 W/mK with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.
Observation of large non-saturating magnetoresistance in rare-earth monopnictides has raised enormous interest in understanding the role of its electronic structure. Here, by a combination of molecular-beam epitaxy, low-temperature transport, angle-resolved photoemssion spectroscopy, and hybrid density functional theory we have unveiled the bandstructure of LuSb, where electron-hole compensation is identified as a mechanism responsible for large magnetoresistance in this topologically trivial compound. In contrast to bulk single crystal analogues, quasi-two-dimensional behavior is observed in our thin films for both electron and holelike carriers, indicative of dimensional confinement of the electronic states. Introduction of defects through growth parameter tuning results in the appearance of quantum interference effects at low temperatures, which has allowed us to identify the dominant inelastic scattering processes and elucidate the role of spin-orbit coupling. Our findings open up new possibilities of band structure engineering and control of transport properties in rare-earth monopnictides via epitaxial synthesis.