Do you want to publish a course? Click here

Gap Function with Point Nodes in Borocarbide Superconductor YNi_2B_2C

115   0   0.0 ( 0 )
 Added by Koichi Izawa
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

To determine the superconducting gap function of a borocarbide superconductor YNi_2B_2C, the c-axis thermal conductivity kappa_zz was measured in a magnetic field rotated in various directions relative to the crystal axes. The angular variation of kappa_zz in H rotated within the ab-plane shows a peculiar fourfold oscillation with narrow cusps. The amplitude of this fourfold oscillation becomes very small when H is rotated conically around the c-axis with a tilt angle of 45 degrees. Based on these results, we provide the first compelling evidence that the gap function of YNi_2B_2C has POINT NODES, which are located along the [100] and [010]-directions. This unprecedented gap structure challenges the current view on the pairing mechanism and on the unusual superconducting properties of borocarbide superconductors.



rate research

Read More

To determine the superconducting gap function of YNi2B2C, we calculate the local density of states (LDOS) around a single vortex core with the use of Eilenberger theory and the band structure calculated by local density approximation assuming various gap structures with point-nodes at different positions. We also calculate the angular-dependent heat capacity in the vortex state on the basis of the Doppler-Shift method. Comparing our results with the STM/STS experiment, the angular-dependent heat capacity and thermal conductivity, we propose the gap-structure of YNi2B2C, which has the point-nodes and gap minima along <110>. Our gap-structure is consistent with all results of angular-resolved experiments.
The thermal conductivity of borocarbide superconductor LuNi_2B_2C was measured down to 70 mK (T_c/200) in a magnetic field perpendicular to the heat current from H = 0 to above H_c2 = 7 T. As soon as vortices enter the sample, the conduction at T -> 0 grows rapidly, showing unambiguously that delocalized quasiparticles are present at the lowest energies. The field dependence is very similar to that of UPt_3, a heavy-fermion superconductor with a line of nodes in the gap, and very different from the exponential dependence characteristic of s-wave superconductors. This is strong evidence for a highly anisotropic gap function in LuNi_2B_2C, possibly with nodes.
We have measured the low temperature heat capacity Cp and microwave surface impedance Zs in the vortex state of YNi_2B_2C. In contrast to conventional s-wave superconductors, Cp shows a nearly sqrt H-dependence. This sqrt H-dependence persists even after the introduction of the columnar defects which change the electronic structure of the vortex core regime dramatically and strongly disturb the regular vortex lattice. On the other hand, flux flow resistivity obtained from Zs is nearly proportional to H. Taken together, these results indicate that the vortex state of YNi_2B_2C is fundamentally different from the conventional s-wave counterparts, in that the delocalized quasiparticle states around the vortex core play a much more important role, similar to d-wave superconductors.
117 - K.Izawa , Y.Kasahara , Y.Matsuda 2005
The superconducting gap structure of recently discovered heavy fermion CePt_3Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T-> 0, with a magnitude in good agreement with the value expected for a residual normal fluid with a nodal gap structure, together with a T^2-dependence at high temperatures. With an applied magnetic fields, the thermal conductivity grows rapidly, in dramatic contrast to fully gapped superconductors, and exhibits one-parameter scaling with T/sqrt{H}. These results place an important constraint on the order parameter symmetry, that is CePt_3Si is most likely to have line nodes.
The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved. The thermal conductivity measurement also reveals a first order transition at H_c2, indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d_{x^2-y^2}, implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا