No Arabic abstract
Two-dimensionality of the scattering events in a Bose-Einstein condensate introduces a logarithmic dependence on density in the coupling constant entering a mean-field theory of the equilibrium density profile, which becomes dominant as the s-wave scattering length gets larger than the condensate thickness. We analyze quantitatively the role of the form of the coupling constant in determining the transverse profile of a condensate confined in a harmonic pancake-shaped trap at zero temperature. We trace the regions of experimentally accessible system parameters for which the cross-over between different dimensionality behaviors may become observable through in situ imaging of the condensed cloud with varying trap anisotropy and scattering length.
The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.
Using the finite-temperature path integral Monte Carlo method, we investigate dilute, trapped Bose gases in a quasi-two dimensional geometry. The quantum particles have short-range, s-wave interactions described by a hard-sphere potential whose core radius equals its corresponding scattering length. The effect of both the temperature and the interparticle interaction on the equilibrium properties such as the total energy, the density profile, and the superfluid fraction is discussed. We compare our accurate results with both the semi-classical approximation and the exact results of an ideal Bose gas. Our results show that for repulsive interactions, (i) the minimum value of the aspect ratio, where the system starts to behave quasi-two dimensionally, increases as the two-body interaction strength increases, (ii) the superfluid fraction for a quasi-2D Bose gas is distinctly different from that for both a quasi-1D Bose gas and a true 3D system, i.e., the superfluid fraction for a quasi-2D Bose gas decreases faster than that for a quasi-1D system and a true 3D system with increasing temperature, and shows a stronger dependence on the interaction strength, (iii) the superfluid fraction for a quasi-2D Bose gas lies well below the values calculated from the semi-classical approximation, and (iv) the Kosterlitz-Thouless transition temperature decreases as the strength of the interaction increases.
Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL) aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs. Within the context of a spherically symmetric `bubble trap potential, we study the evolution of the system from small filled spheres to hollow, large, thin shells via the tuning of trap parameters. We analyze the bubble trap spectrum and states, and track the distinct changes in spectra between radial and angular modes across the evolution. This separation of the excitation spectrum provides a basis for quantifying dimensional cross-over to quasi-2D physics at a given temperature. Using the spectral data, for a range of trap parameters, we compute the critical temperature for a fixed number of particles to form a BEC. For a set of initial temperatures, we also evaluate the change in temperature that would occur in adiabatic expansion from small filled sphere to large thin shell were the trap to be dynamically tuned. We show that the system cools during this expansion but that the decrease in critical temperature occurs more rapidly, thus resulting in depletion of any initial condensate. We contrast our spectral methods with standard semiclassical treatments, which we find must be used with caution in the thin-shell limit. With regards to interactions, using energetic considerations and corroborated through Bogoliubov treatments, we demonstrate that they would be less important for thin shells due to reduced density but vortex physics would become more predominant. Finally, we apply our treatments to traps that realistically model CAL experiments and borrow from the thermodynamic insights found in the idealized bubble case during adiabatic expansion.
Motivated by recent observations of phase-segregated binary Bose-Einstein condensates, we propose a method to calculate the excess energy due to the interface tension of a trapped configuration. By this method one should be able to numerically reproduce the experimental data by means of a simple Thomas-Fermi approximation, combined with interface excess terms and the Laplace equation. Using the Gross-Pitaevskii theory, we find expressions for the interface excesses which are accurate in a very broad range of the interspecies and intraspecies interaction parameters. We also present finite-temperature corrections to the interface tension which, aside from the regime of weak segregation, turn out to be small.
We discuss the effects of quenched disorder in a dilute Bose-Einstein condensate confined in a hard walls trap. Starting from the disordered Gross-Pitaevskii functional, we obtain a representation for the quenched free energy as a series of integer moments of the partition function. Positive and negative disorder-dependent effective coupling constants appear in the integer moments. Going beyond the mean-field approximation, we compute the static two-point correlation functions at first-order in the positive effective coupling constants. We obtain the combined contributions of effects due to boundary conditions and disorder in this weakly disordered condensate. The ground state renormalized density profile of the condensate is presented. We also discuss the appearance of metastable and true ground states for strong disorder, when the effective coupling constants become negative.