We present an ab initio study of the relaxations introduced in TiO2 when a Cd impurity substitutes a Ti atom and the experimental test of this calculation by a perturbed-angular-correlation (PAC) measurement of the orientation of the electric-field gradient (EFG) tensor at the Cd site. The ab-initio calculation predicts strong anisotropic relaxations of the nearest oxygen neighbors of the impurity and a change of the orientation of the largest EFG tensor component, V33, from the [001] to the [110] direction upon substitution of a Ti atom by a Cd impurity. The last prediction is confirmed by the PAC experiment that shows that V33 at the Cd site is parallel to either the [110] or the [1bar{1}0] crystal axis.