No Arabic abstract
The specific heat of polycrystalline Mg$^{11}$B$_{2}$ has been measured with high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The excess specific heat above T$_{c}$ is discussed in terms of Gaussian fluctuations and suggests that Mg$^{11}$B$_{2}$ is a bulk superconductor with Ginzburg-Landau coherence length $xi_{0}=26$ AA . The transition-width broadening in field is treated in terms of lowest-Landau-level (LLL) fluctuations. That analysis requires that $xi_{0}=20$ AA . The underestimate of the coherence length in field, along with deviations from 3D LLL predictions, suggest that there is an influence from the anisotropy of B$_{c2}$ between the c-axis and the a-b plane.
The specific heat of single crystal hole-doped Ca0.33Na0.67Fe2As2, Tc(onset)=33.7 K, was measured from 0.4 to 40 K. The discontinuity in the specific heat at Tc, deltaC, divided by Tc is 105 +- 5 mJ/molK2, consistent with values found previously for hole-doped Ba0.6K0.4Fe2As2 and somewhat above the general trend for deltaC/Tc vs Tc for the iron based superconductors established by Budko, Ni and Canfield. The usefulness of measured valued of deltaC/Tc as an important metric for the quality of samples is discussed.
Comprehensive low-temperature specific heat data C(T,H) of Na_0.35CoO2-1.3H_2O with temperature T down to 0.6 K and the magnetic field H up to 8 T are presented. For the normal state, the values of gamma_n=13.94 mJ/mol K2, and Debye temperature 362 K are reported. At zero field, a very sharp superconducting anomaly was observed at Tc=4.5 K with DeltaC/gamma_nTc=1.45. The superconducting volume fraction is estimated to be 47.4 % based on the consideration of entropy balance at Tc for the second-order superconducting phase transition. In the superconducting state, the electronic contribution C_es at H=0 can be well described by the model of the line nodal order parameter. In low H, gamma(H) H^1/2 which is also a manifestation of the line nodes. The behaviors of both Tc(H) and gamma(H) suggest the anisotropy of Hc2 or possible crossovers or transitions occurring in the mixed state.
We report specific heat under different magnetic fields for recently discovered quasi-one dimensional Nb2PdS5 superconductor. The studied compound is superconducting below 6 K. Nb2PdS5 is quite robust against magnetic field with dHc/dT of -42 kOe/K. The estimated upper critical field [Hc2(0)] is 190 kOe, clearly surpassing the Pauli-paramagnetic limit of 1.84Tc. Low temperature heat capacity in superconducting state of Nb2PdS5 under different magnetic fields showed s-wave superconductivity with two different gaps. Two quasi-linear slopes in Somerfield-coefficient as a function of applied magnetic field and two band behavior of the electronic heat capacity demonstrate that Nb2PdS5 is a multiband su-perconductor in weak coupling limit with deltagamma/deltaTc=0.9.
We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH_{c2}/dT at T_c can be obtained without sacrificing more than a few degrees in T_c. The upper critical field of the sample after irradiation exceeds 28 T at T goes to 0 K.
Porous aerogel is a source of elastic scattering in superfluid 3He and modifies the properties of the superfluid, suppressing the transition temperature and order parameter. The specific heat jumps for the B-phase of superfluid 3He in aerogel have been measured as a function of pressure and interpreted using the homogeneous and inhomogeneous isotropic scattering models. The specific heat jumps for other p-wave states are estimated for comparison.