Superconductivity and Antiferromagnetism in Three-Dimensional Hubbard model


Abstract in English

Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of the ratio $r_{rm z}=t_{rm z}/t_{perp}$ using the spin fluctuation theory within the fluctuation-exchange approximation. The antiferromagnetic phase around the half-filled electron density expands while the neighboring phase of the anisotropic $d_{x^{2}-y^{2}}$-wave superconductivity shrinks with increasing $r_{rm z}$. For small $r_{rm z}$ $T_{rm c}$ decreases slowly with increasing $r_{rm z}$. For moderate values of $r_{rm z}$ we find the second order transition, with lowering temperature, from the $d_{x^{2}-y^{2}}$-wave superconducting phase to a phase where incommensurate SDW coexists with $d_{x^{2}-y^{2}}$-wave superconductivity. Resonance peaks as were discussed previously for 2D superconductors are shown to survive in the $d_{x^{2}-y^{2}}$-wave superconducting phase of 3D systems. Soft components of the incommensurate SDW spin fluctuation mode grow as the coexistent phase is approached.

Download