The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For $kappa$-(BEDT-TTF)$_2$I$_3$ we find a well-resolved peak in the angle-dependent magnetoresistance at $Theta = 90^circ$ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for $beta$-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.
A mysterious incoherent metallic (IM) normal state with $T$-linear resistivity is ubiquitous among strongly correlated superconductors. Recent progress with microscopic models exhibiting IM transport has presented the opportunity for us to study new models that exhibit direct transitions into a superconducting state out of IM states within the framework of connected Sachdev-Ye-Kitaev (SYK) quantum dots. Here local SYK interactions within a dot produce IM transport in the normal state, while local attractive interactions drive superconductivity. Through explicit calculations, we find two features of superconductivity arising from an IM normal state: First, despite the absence of quasiparticles in the normal state, the superconducting state still exhibits coherent superfluid transport. Second, the non-quasiparticle nature of the IM Greens functions produces a large enhancement in the ratio of the zero-temperature superconducting gap $Delta$ and transition temperature $T_{sc}$, $2Delta/T_{sc}$, with respect to its BCS value of $3.53$.
We report the results of the angular-dependent magnetoresistance oscillations (AMROs), which can determine the shape of bulk Fermi surfaces in quasi-two-dimensional (Q2D) systems, in a highly hole-doped Fe-based superconductor KFe$_2$As$_2$ with $T_c approx$ 3.7 K. From the AMROs, we determined the two Q2D FSs with rounded-square cross sections, corresponding to 12% and 17% of the first Brillouin zone. The rounded-squared shape of the FS cross section is also confirmed by the analyses of the interlayer transport under in-plane fields. From the obtained FS shape, we infer the character of the 3d orbitals that contribute to the FSs.
Correlations between electrons and the effective dimensionality are crucial factors that shape the properties of an interacting electron system. For example, the onsite Coulomb repulsion, U, may inhibit, or completely block the intersite electron hopping, t, and depending on the ratio U/t, a material may be a metal or an insulator. The correlation effects increase as the number of allowed dimensions decreases. In 3D systems, the low energy electronic states behave as quasiparticles (QP), while in 1D systems, even weak interactions break the quasiparticles into collective excitations. Dimensionality is particularly important for a class of new exotic low-dimensional materials where 1D or 2D building blocks are loosely connected into a 3D whole. Small interactions between the blocks may induce a whole variety of unusual transitions. Here, we examine layered systems that in the direction perpendicular to the layers display a crossover from insulating-like, at high temperatures, to metallic-like character at low temperatures, while being metallic over the whole temperature range within the layers. We show that this change in effective dimensionality correlates with the existence or non-existence of coherent quasiparticles within the layers.
Strong spin-orbit interaction in the two dimensional compound Sr2IrO4 leads to the formation of Jeff=1/2 isospins with unprecedented dynamics. In Raman scattering a continuum attributed to double spin scattering is observed. With higher excitation energy of the incident Laser this signal crosses over to an incoherent background. The characteristic energy scale of this cross over is identical to that of intensity resonance effects in phonon scattering. It is related to exciton-like orbital excitations that are also evident in resonant X-Ray scattering. The crossover and evolution of incoherent excitations are proposed to be due to their coupling to spin excitations. This signals a spin-orbit induced entanglement of spin, lattice and charge degrees of freedoms in Sr2IrO4.
Exact calculations of collective excitations and charge/spin (pseudo)gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation, condensation and recombination of electron charge and spin, driven by interaction strength, inter-site couplings and temperature. Near crossing degeneracies, the electron configurations of the lowest energies control the physics of electronic pairing, phase separation and magnetic transitions. Rigorous conditions are found for the smooth and dramatic phase transitions with competing stable and unstable inhomogeneities. Condensation of electron charge and spin degrees at various temperatures offers a new mechanism of pairing and a possible route to superconductivity in inhomogeneous systems, different from the BCS scenario. Small bipartite and frustrated clusters exhibit charge and spin inhomogeneities in many respects typical for nano and heterostructured materials. The calculated phase diagrams in various geometries may be linked to atomic scale experiments in high T$_c$ cuprates, manganites and other concentrated transition metal oxides.