Do you want to publish a course? Click here

Nonequilibrium Probabilistic Dynamics of the Logistic Map at the Edge of Chaos

84   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider nonequilibrium probabilistic dynamics in logistic-like maps $x_{t+1}=1-a|x_t|^z$, $(z>1)$ at their chaos threshold: We first introduce many initial conditions within one among $W>>1$ intervals partitioning the phase space and focus on the unique value $q_{sen}<1$ for which the entropic form $S_q equiv frac{1-sum_{i=1}^{W} p_i^q}{q-1}$ {it linearly} increases with time. We then verify that $S_{q_{sen}}(t) - S_{q_{sen}}(infty)$ vanishes like $t^{-1/[q_{rel}(W)-1]}$ [$q_{rel}(W)>1$]. We finally exhibit a new finite-size scaling, $q_{rel}(infty) - q_{rel}(W) propto W^{-|q_{sen}|}$. This establishes quantitatively, for the first time, a long pursued relation between sensitivity to the initial conditions and relaxation, concepts which play central roles in nonextensive statistical mechanics.



rate research

Read More

The probability distribution of sums of iterates of the logistic map at the edge of chaos has been recently shown [see U. Tirnakli, C. Beck and C. Tsallis, Phys. Rev. E 75, 040106(R) (2007)] to be numerically consistent with a q-Gaussian, the distribution which, under appropriate constraints, maximizes the nonadditive entropy S_q, the basis of nonextensive statistical mechanics. This analysis was based on a study of the tails of the distribution. We now check the entire distribution, in particular its central part. This is important in view of a recent q-generalization of the Central Limit Theorem, which states that for certain classes of strongly correlated random variables the rescaled sum approaches a q-Gaussian limit distribution. We numerically investigate for the logistic map with a parameter in a small vicinity of the critical point under which conditions there is convergence to a q-Gaussian both in the central region and in the tail region, and find a scaling law involving the Feigenbaum constant delta. Our results are consistent with a large number of already available analytical and numerical evidences that the edge of chaos is well described in terms of the entropy S_q and its associated concepts.
We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced by Pluchino et al [Phys. Rev. E {bf 87}, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time $tau$, possible connections with $q$-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy $S_q$, basis of nonextensive statistics mechanics. We have here a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple $q$-Gaussians. Nevertheless, along many decades, the fitting with $q$-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index $q$ evolves with $(N, tau, epsilon, sigma_{max})$. It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by the Pluchino et al model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
We study the evolution of the probability density of ensembles of iterates of the logistic map that advance towards and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade, and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The iteration time progress of the densities of trajectories is determined via the action of the Frobenius-Perron (FP) operator. As a difference with the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this iconic model can be better characterized in statistical-mechanical terms. The scaling of the densities along the considered families of attractors conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows. Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal system undergoing a second-order phase transition. We discuss our results.
Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.
We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps $x_{t+1} = 1-a|x_t|^{z_i}$ ($i=1,2$ correspond to $x_t>0$ and $x_t<0$ respectively, $z_i >1$, $0<aleq 2$, $t=0,1,2,...$) at the edge of chaos. We employ three distinct algorithms to characterize the power-law sensitivity to initial conditions at the edge of chaos, namely: direct measure of the divergence of initially nearby trajectories, the computation of the rate of increase of generalized nonextensive entropies $S_q$ and multifractal analysis. The first two methods provide consistent estimates for the exponent governing the power-law sensitivity. In addition to this, we verify that the multifractal analysis does not provide precise estimates of the singularity spectrum $f(alpha)$, specially near its extremal points. Such feature prevents to perform a fine check of the accuracy of the scaling relation between $f(alpha)$ and the entropic index $q$, thus restricting the applicability of the multifractal analysis for studing the sensitivity to initial conditions in this class of asymmetric maps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا