First-order disorder-driven transition and inverse melting of the vortex lattice


Abstract in English

Vortex matter phase transitions in the high-temperature superconductor Bi2Sr2CaCu2O8 were studied using local magnetization measurements combined with a vortex shaking technique. The measurements revealed thermodynamic evidence of a first-order transition along the second magnetization peak line, at temperatures below the apparent critical point Tcp. We found that the first-order transition line does not terminate at Tcp, but continues down to at least 30 K. This observation suggests that the ordered vortex lattice phase is destroyed through a unified first-order transition that changes its character from thermally induced melting at high temperatures to a disorder-induced transition at low temperatures. At intermediate temperatures the transition line shows an upturn, which implies that the vortex matter displays inverse melting behavior.

Download