Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit


Abstract in English

We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70K, but broaden considerably with increasing temperature. The dispersion flattens out with increasing temperature as the resonance energy Delta at the antiferromagnetic wave-vector increases and the maximum in the dispersion decreases. The correlation length xi between T=12 and 50K is in agreement with quantum Monte Carlo calculations. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12K where three-dimensional spin correlations are important, xi is shorter than predicted and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion.

Download