No Arabic abstract
m-H loops for virgin and neutron irradiated bulk and powder samples of MgB_{2} were measured in the temperature range 5-30 K in magnetic field B<= 1 T. The irradiation at thermal neutron fluences 9*10^{13} and 4.5*10^{14} cm^{-2} caused very small enhancement of m-H loops at lower temperatures (T<20 K), whereas the effect at high temperatures was unclear due to difficulty in achieving exactly the same measurement temperature prior and after irradiation. However, the irradiation at 4.5*10^{15} cm^{-2} produced clear enhancement of m-H loops (hence J_{c}) at all investigated temperatures, which provides the evidence for the enhancement of flux pinning in MgB_{2} due to ion tracks resulting from n+^{10}B reaction. The potential of this technique for the enhancement of flux pinning in high temperature superconductors is briefly discussed.
We study the effect of neutron irradiation on the critical current density Jc of isotopically pure polycrystalline Mg11B2 samples. For fluences in the range 1017-1018 cm-2, Jc is enhanced and its dependence on magnetic field is significantly improved: we demonstrate that, in this regime, point-like pinning centers are effectively introduced in the system proportionally to the neutron fluence. Instead, for larger fluences, a strong suppression of the critical temperature accompanied by a decrease of both the upper critical field Bc2 and Jc is found.
We have studied flux-pinning effects of MgB$_2$ superconductor by doping (Fe, Ti) particles of which radius is 163 nm on average. 5 wt.% (Fe, Ti) doped MgB$_2$ among the specimens showed the best field dependence of magnetization and 25 wt.% one did the worst at 5 K . The difference of field dependence of magnetization of the two increased as temperature increased. Here we show experimental results of (Fe, Ti) particle-doped MgB$_2$ according to dopant level and the causes of the behaviors. Flux-pinning effect of volume defects-doped superconductor was modeled in ideal state. During the study, we had to divide M-H curve of volume defect-dominating superconductor as three discreet regions for analyzing flux pinning effects, which are diamagnetic increase region, $Delta$H=$Delta$B region, and diamagnetic decrease region. As a result, flux-pinning effects of volume defects decreased as dopant level increased over the optimal dopant level, which was caused by decrease of flux-pinning limit of a volume defect. And similar behaviors are obtained as dopant level decreased below the optimal dopant level, which was caused by the decreased number of volume defects. Comparing the theory with experimental results, deviations increased as dopant level increased over the optimal dopant level, whereas the two was well matched on less dopant level than the optimal dopant level. The behavior is considered to be caused by segregation of volume defects. On the other hand, the property of over-doped specimens dramatically decrease as temperature increases, which is caused by double decreases of flux-pinning limit of a volume defect and segregation effect.
The magnetic field dependent critical current density $j_c(B)$ of a MgB$_2$ bulk sample has been obtained by means of magnetization hysteresis measurements. The $j_c(B)$ curves at different temperatures demonstrate a crossover from single vortex pinning to small-bundle vortex pinning, when the field is larger than the crossover field $B_{sb}$. The temperature dependence of the crossover field $B_{sb}(T)$ is in agreement with a model of randomly distributed weak pinning centers via the spatial fluctuations of the transition temperature ($delta T_c$-pinning), while pinning due to the mean free path fluctuations ($delta l$-pinning) is not observed.
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5K, introducing pinning centres effective at high fields and temperatures and enhancing Jc and Hirr significantly. Compared to the non-doped sample, Jc for the 10wt% doped sample increased by a factor of 32 at 5K and 8T, 42 at 20K and 5T, and 14 at 30K and 2T. At 20K, which is considered to be a benchmark operating temperature for MgB2, the best Jc for the doped sample was 2.4x10^5A/cm2 at 2T, which is comparable to Jc of the best Ag/Bi-2223 tapes. At 20K and 4T, Jc was 36,000A/cm2, which was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using the formula of MgBxSiyCz instead of the pure MgB2.
We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating layer to eliminate proximity effect. The quasi-periodic domain patterns with different and systematically adjustable width w, as acquired by a special demagnetization procedure, exert tunable vortex pinning on a superconducting layer. The largest enhancement of vortex pinning, by a factor of more than 10, occurs when w ~ 310 nm is close to the magnetic penetration depth.