The stochastic Gross-Pitaevskii equation


Abstract in English

We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approach involves the derivation of a simplified quantum kinetic theory, in which all processes are treated locally. It is shown that this kinetic theory can then be transformed into a number of phase-space representations, of which the Wigner function description, although approximate, is shown to be the most advantageous. In this description, the quantum kinetic master equation takes the form of a GPE with noise and damping added according to a well-defined prescription--an equation we call the stochastic GPE. From this, a very simplified description we call the phenomenological growth equation can be derived. We use this equation to study i) the nucleation and growth of vortex lattices, and ii) nonlinear losses in a hydrogen condensate, which it is shown can lead to a curious instability phenomenon.

Download