No Arabic abstract
The dynamics of optically generated electron-hole pairs is investigated in a disordered semiconductor nanowire. The particle pairs are generated by short laser pulses and their dynamics is followed using the Heisenberg equation of motion. Is is shown that Coulomb-correlation acts against localization in the case of the two-interacting particles (TIP) problem. Furthermore, currents are generated using a coherent combination of full-gap and half-gap pulses. The subsequent application of a full-gap pulse after time $tau$ produces an intraband echo phenomenon $2tau$ time later. The echo current is shown to depend on the mass ratio between the electrons and the holes.
A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.
Local ultrafast optical excitation of electron-hole pairs in disordered semiconductors provides the possibility to observe experimentally interaction-assisted propagation of correlated quantum particles in a disordered environment. In addition to the interaction driven delocalization known for the conventional single-band TIP-(two-interacting-particles)-problem the semiconductor model has a richer variety of physical parameters that give rise to new features in the temporal dynamics. These include different masses, correlated vs. anticorrelated disorder for the two particles, and dependence on spectral position of excitation pulse.
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We have established that with the electron density going to zero the Coulomb interaction brings the arrangement of the Anderson localized electrons closer and closer to an ideal (Wigner) crystal lattice, provided the temperature is sufficiently low and the dimension of the system is > 1. The ordering occurs despite the fact that a random spread of the energy levels of the localized one-electron states, exceeding the mean Coulomb energy per electron, renders it impossible the electrons to be self-localized due to their mutual Coulomb repulsion This differs principally the Coulomb ordered Anderson localized electron system (COALES) from Wigner crystal, Wigner glass, and any other ordered electron or hole system that results from the Coulomb self-localization of electrons/holes. The residual disorder inherent to COALES is found to bring about a multi-valley ground-state degeneration akin to that in spin glass. With the electron density increasing, COALES is revealed to turn into Wigner glass or a glassy state of a Fermi-glass type depending on the width of the random spread of the electron levels.
We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to the properties of the rate functions of the corresponding Gibbs measures. We derive the analog of the Wentzell-Freidlin theory in this case, showing that any transition can be decomposed, with probability exponentially close to one, into a deterministic sequence of ``admissible transitions. For these admissible transitions we give upper and lower bounds on the expected transition times that differ only by a constant. The distribution rescaled transition times are shown to converge to the exponential distribution. We exemplify our results in the context of the random field Curie-Weiss model.
In a recent publication [Phys. Rev. Lett. 97, 227402 (2006), cond-mat/0611411], it has been demonstrated numerically that a long-range disorder potential in semiconductor quantum wells can be reconstructed reliably via single-photon interferometry of spontaneously emitted light. In the present paper, a simplified analytical model of independent two-level systems is presented in order to study the reconstruction procedure in more detail. With the help of this model, the measured photon correlations can be calculated analytically and the influence of parameters such as the disorder length scale, the wavelength of the used light, or the spotsize can be investigated systematically. Furthermore, the relation between the proposed angle-resolved single-photon correlations and the disorder potential can be understood and the measured signal is expected to be closely related to the characteristic strength and length scale of the disorder.