No Arabic abstract
On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.
A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution.
Barkhausen noise as found in magnets is studied both with and without the presence of long-range (LR) demagnetizing fields using the non-equilibrium, zero-temperature random-field Ising model. Two distinct subloop behaviors arise and are shown to be in qualitative agreement with experiments on thin film magnets and soft ferromagnets. With LR fields present subloops resemble a self-organized critical system, while their absence results in subloops that reflect the critical point seen in the saturation loop as the system disorder is changed. In the former case, power law distributions of noise are found in subloops, while in the latter case history-induced critical scaling is studied in avalanche size distributions, spin-flip correlation functions, and finite-size scaling of the second moments of the size distributions. Results are presented for simulations of over 10^8 spins.
A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.
We discuss fluctuation-induced forces in a system described by a continuous Landau-Ginzburg model with a quenched disorder field, defined in a $d$-dimensional slab geometry $mathbb R^{d-1}times[0,L]$. A series representation for the quenched free energy in terms of the moments of the partition function is presented. In each moment an order parameter-like quantity can be defined, with a particular correlation length of the fluctuations. For some specific strength of the non-thermal control parameter, it appears a moment of the partition function where the fluctuations associated to the order parameter-like quantity becomes long-ranged. In this situation, these fluctuations become sensitive to the boundaries. In the Gaussian approximation, using the spectral zeta-function method, we evaluate a functional determinant for each moment of the partition function. The analytic structure of each spectral zeta-function depending on the dimension of the space for the case of Dirichlet, Neumann Laplacian and also periodic boundary conditions is discussed in a unified way. Considering the moment of the partition function with the largest correlation length of the fluctuations, we evaluate the induced force between the boundaries, for Dirichlet boundary conditions. We prove that the sign of the fluctuation-induced force for this case depend in a non-trivial way on the strength of the non-thermal control parameter.
Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent-potential approximation (CPA) suited for describing ($i$) the diffusive (hopping) motion of classical particles in a random environment and ($ii$) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency non-analyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable to treat the percolative aspects of hopping transport adequately.