Competition between spin exchange and correlated hopping


Abstract in English

The ground-state phase diagram is numerically studied for an electronic model consisting of the spin exchange term (J) and the correlated hopping term (t_3: the three-site term). This model has no single-particle hopping and the ratio of the two terms is controlled by a parameter alpha equiv 4 t_3 / J. The case of alpha=1 corresponds to complete suppression of single-particle hopping in the strong-coupling limit of the Hubbard model. In one dimension, phase separation takes place below a critical value alpha_c = 0.36-0.63 which depends on the electron density. Spin gap opens in the whole region except the phase-separated one. For alpha gsim 1.2 and low hole densities, charge-density-wave correlations are the most dominant, whereas singlet-pairing correlations are the most dominant in the remaining region. The possibility of superconductivity in the two-dimensional case is also discussed, based on equal-time pairing correlations.

Download