Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation


Abstract in English

The quasiparticle band structures of nonmagnetic monoxides, MO (M=Mg, Ca, Ti, and V), are calculated by the GW approximation. The band gap and the width of occupied oxygen 2p states in insulating MgO and CaO agree with experimental observation. In metallic TiO and VO, conduction bands originated from metal 3d states become narrower. Then the partial densities of transition metal e_g and t_2g states show an enhanced dip between the two. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the Hartree-Fock approximation and the static Coulomb hole plus screened exchange approximation. The d-d Coulomb interaction is shown to be very much reduced by on-site and off-site d-electron screening in TiO and VO. The dielectric function and the energy loss spectrum are also presented and discussed in detail.

Download