Aharonov-Bohm oscillations have been observed in a lattice formed by a two dimensional rhombus tiling. This observation is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have investigated the low temperature magnetotransport of the T3 lattice realized in the GaAlAs/GaAs system. Using an additional electrostatic gate, we have studied the influence of the channel number on the oscillations amplitude. Finally, the role of the disorder on the strength of the localization is theoretically discussed.
The interplay of $pi$-flux and lattice geometry can yield full localization of quantum dynamics in lattice systems, a striking interference phenomenon known as Aharonov-Bohm caging. At the level of the single-particle energy spectrum, this full-localization effect is attributed to the collapse of Bloch bands into a set of perfectly flat (dispersionless) bands. In such lattice models, the effects of inter-particle interactions generally lead to a breaking of the cages, and hence, to the spreading of the wavefunction over the lattice. Motivated by recent experimental realizations of analog Aharonov-Bohm cages for light, using coupled-waveguide arrays, we hereby demonstrate that caging always occurs in the presence of local nonlinearities. As a central result, we focus on special caged solutions, which are accompanied by a breathing motion of the field intensity, that we describe in terms of an effective two-mode model reminiscent of a bosonic Josephson junction. Moreover, we explore the quantum regime using small particle ensembles, and we observe quasi-caged collapse-revival dynamics with negligible leakage. The results stemming from this work open an interesting route towards the characterization of nonlinear dynamics in interacting flat band systems.
We present magnetotransport measurements in HgTe quantum well with inverted band structure, which expected to be a two-dimensional topological insulator having the bulk gap with helical gapless states at the edge. The negative magnetoresistance is observed in the local and nonlocal resistance configuration followed by the periodic oscillations damping with magnetic field. We attribute such behaviour to Aharonov-Bohm effect due to magnetic flux through the charge carrier puddles coupled to the helical edge states. The characteristic size of these puddles is about 100 nm.
We analyze the posibility of employing the mesoscopic-nanoscopic ring of a normal metal in a doubly degenerate persistent current state with a third auxihilary level and in the presence of the Aharonov-Bohm flux equal to the half of the normal flux quantum $hbar c/e$ as a qubit. The auxiliary level can be effectively used for all fundamental quantum logic gate (qu-gate) operations which includes the initialization, phase rotation, bit flip and the Hadamard transformation as well as the double-qubit controlled operations (conditional bit flip). We suggest a tentative realization of the mechanism as either the mesoscopic structure of three quantum dots coherently coupled by mesoscopic tunnelling in crossed magnetic and electric fields, or as a nanoscopic structure of triple anionic vacancy (similar to $F_3$ centers in alkali halides) with one trapped electron in one spin projection state.
The Greens functions of the two and three-dimensional relativistic Aharonov-Bohm (A-B) systems are given by the path integral approach. In addition the exact radial Greens functions of the spherical A-B quantum billiard system in two and three-dimensional are obtained via the perturbation techanique of $delta $-function.
We address the quantum dot phase measurement problem in an open Aharonov-Bohm interferometer, assuming multiple transport channels. In such a case, the quantum dot is characterized by more than one intrinsic phase for the electrons transmission. It is shown that the phase which would be extracted by the usual experimental method (i.e. by monitoring the shift of the Aharonov-Bohm oscillations, as in Schuster {it et al.}, Nature {bf 385}, 417 (1997)) does not coincide with any of the dot intrinsic phases, but is a combination of them. The formula of the measured phase is given. The particular case of a quantum dot containing a $S=1/2$ spin is discussed and variations of the measured phase with less than $pi$ are found, as a consequence of the multichannel transport.