No Arabic abstract
Minority game is a model of heterogeneous players who think inductively. In this game, each player chooses one out of two alternatives every turn and those who end up in the minority side wins. It is instructive to extend the minority game by allowing players to choose one out of many alternatives. Nevertheless, such an extension is not straight-forward due to the difficulties in finding a set of reasonable, unbiased and computationally feasible strategies. Here, we propose a variation of the minority game where every player has more than two options. Results of numerical simulations agree with the expectation that our multiple choices minority game exhibits similar behavior as the original two-choice minority game.
We propose a new model of minority game with so-called smart agents such that the standard deviation and the total loss in this model reach the theoretical minimum values in the limit of long time. The smart agents use trail and error method to make a choice but bring global optimization to the system, which suggests that the economic systems may have the ability to self-organize into a highly optimized state by agents who are forced to make decisions based on inductive thinking for their limited knowledge and capabilities. When other kinds of agents are also present, the experimental results and analyses show that the smart agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority game.
Generalization of the minority game to more than one market is considered. At each time step every agent chooses one of its strategies and acts on the market related to this strategy. If the payoff function allows for strong fluctuation of utility then market occupancies become inhomogeneous with preference given to this market where the fluctuation occured first. There exists a critical size of agent population above which agents on bigger market behave collectively. In this regime there always exists a history of decisions for which all agents on a bigger market react identically.
In this paper the extended model of Minority game (MG), incorporating variable number of agents and therefore called Grand Canonical, is used for prediction. We proved that the best MG-based predictor is constituted by a tremendously degenerated system, when only one agent is involved. The prediction is the most efficient if the agent is equipped with all strategies from the Full Strategy Space. Each of these filters is evaluated and, in each step, the best one is chosen. Despite the casual simplicity of the method its usefulness is invaluable in many cases including real problems. The significant power of the method lies in its ability to fast adaptation if lambda-GCMG modification is used. The success rate of prediction is sensitive to the properly set memory length. We considered the feasibility of prediction for the Minority and Majority games. These two games are driven by different dynamics when self-generated time series are considered. Both dynamics tend to be the same when a feedback effect is removed and an exogenous signal is applied.
What is the physical origin of player cooperation in minority game? And how to obtain maximum global wealth in minority game? We answer the above questions by studying a variant of minority game from which players choose among $N_c$ alternatives according to strategies picked from a restricted set of strategy space. Our numerical experiment concludes that player cooperation is the result of a suitable size of sampling in the available strategy space. Hence, the overall performance of the game can be improved by suitably adjusting the strategy space size.
We generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected, and the target cluster merges with the larger of the two candidate clusters. We study the long-time asymptotic behavior, and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of novel features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tails of the density are overpopulated, at the expense of the density moderate-size clusters. We also study the complementary case where the smaller candidate clusters participates in the aggregation process, and find abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters, and a symmetric implementation where the choice is between two pairs of clusters.