The aim of this work is to study the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our numerical results show that the nearest neighbor spacing distribution $P(s)$ and the spectral rigidity $Delta_3(L)$ do not follow Poisson statistics. In particular, $P(s)$ shows a sharp peak at $s=1$ while $Delta_3(L)$ for small values of $L$ follows the Poissonian predictions and asymptotically it shows large fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of quantum numbers by breaking the axial symmetry of the rigid rotator.