Magnetotransport of CeRhIn5


Abstract in English

We report measurements of the temperature-dependent anisotropic resistivity and in-plane magnetoresistance on single crystals of the tetragonal heavy-fermion antiferromagnet (TN = 3.8 K) CeRhIn5. The measurements are reported in the temperature range 1.4 K to 300 K and in magnetic fields to 18 tesla. The resistivity is moderately anisotropic, with a room-temperature c-axis to in-plane resistivity ratio rho_c/rho_a(300 K) = 1.7. rho(T) measurements on the non-magnetic analog LaRhIn5 indicate that the anisotropy in the CeRhIn5 resistivity stems predominately from anisotropy in Kondo-derived magnetic scattering. In the magnetically ordered regime an applied field H reduces TN only slightly due to the small ordered moment (0.37mu_B) and magnetic anisotropy. The magnetoresistance (MR) below TN is positive and varies linearly with H. In the paramagnetic state a positive MR is present below 7.5 K, while a high-field negative contribution is evident at higher temperatures. The positive contribution decreases in magnitude with increasing temperature. Above 40 K the positive contribution is no longer observable, and the MR is negative. The low-T positive MR results from interactions with the Kondo-coherent state, while the high-T negative MR stems from single-impurity effects. The H and T-dependent magnetotransport reflects the magnetic anisotropy and Kondo interactions at play in CeRhIn5.

Download