Do you want to publish a course? Click here

Master equation approach to configurational kinetics of non-equilibrium alloys and its application to studies of L1_0 type orderings

263   0   0.0 ( 0 )
 Added by Kirill Belashchenko
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review a series of works where the fundamental master equation is used to develop a microscopical description of evolution of non-equilibrium atomic distributions in alloys. We describe exact equations for temporal evolution of local concentrations and their correlators as well as approximate methods to treat these equations, such as the kinetic mean-field and the kinetic cluster methods. We also describe an application of these methods to studies of kinetics of L1_0 type orderings in FCC alloys which reveal a number of peculiar microstructural effects, many of them agreeing well with experimental observations.



rate research

Read More

The earlier-developed master equation approach and kinetic cluster methods are applied to study kinetics of L1_0 type orderings in alloys, including the formation of twinned structures characteristic of cubic-tetragonal-type phase transitions. A microscopical model of interatomic deformational interactions is suggested which generalizes a similar model of Khachaturyan for dilute alloys to the physically interesting case of concentrated alloys. The model is used to simulate A1->L1_0 transformations after a quench of an alloy from the disordered A1 phase to the single-phase L1_0 state for a number of alloy models with different chemical interactions, temperatures, concentrations, and tetragonal distortions. We find a number of peculiar features in both transient microstructures and transformation kinetics, many of them agreeng well with experimental data. The simulations also demonstrate a phenomenon of an interaction-dependent alignment of antiphase boundaries in nearly-equilibrium twinned bands which seems to be observed in some experiments.
First-principles studies often rely on the assumption of equilibrium, which can be a poor approximation, e.g., for growth. Here, an effective chemical potential method for non-equilibrium systems is developed. A salient feature of the theory is that it maintains the equilibrium limits as the correct limit. In application to molecular beam epitaxy, rate equations are solved for the concentrations of small clusters, which serve as feedstock for growth. We find that the effective chemical potential is determined by the most probable, rather than by the lowest-energy, cluster. In the case of Bi2Se3, the chemical potential is found to be highly supersaturated, leading to a high nucleus concentration in agreement with experiment.
Although of practical importance, there is no established modeling framework to accurately predict high-temperature cyclic oxidation kinetics of multi-component alloys due to the inherent complexity. We present a data analytics approach to predict the oxidation rate constant of NiCr-based alloys as a function of composition and temperature with a highly consistent and well-curated experimental dataset. Two characteristic oxidation models, i.e., a simple parabolic law and a statistical cyclic-oxidation model, have been chosen to numerically represent the high-temperature oxidation kinetics of commercial and model NiCr-based alloys. We have successfully trained machine learning (ML) models using highly ranked key input features identified by correlation analysis to accurately predict experimental parabolic rate constants (kp). This study demonstrates the potential of ML approaches to predict oxidation kinetics of alloys over a wide composition and temperature ranges. This approach can also serve as a basis for introducing more physically meaningful ML input features to predict the comprehensive cyclic oxidation behavior of multi-component high-temperature alloys with proper constraints based on the known underlying mechanisms.
We measured the reduced partition function ratios for iron isotopes in goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite (H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements were made on synthetic minerals enriched in 57Fe. A new method (i.e., the general moment approach) is presented to calculate {beta}-factors from the moments of the NRIXS spectrum S(E). The first term in the moment expansion controls iron isotopic fractionation at high temperature and corresponds to the mean force constant of the iron bonds, a quantity that is readily measured and often reported in NRIXS studies.
Frustrated magnets are one class of fascinating materials that host many intriguing phases such as spin ice, spin liquid and complex long-range magnetic orderings at low temperatures. In this work we use first-principles calculations to find that in a wide range of magnetically frustrated oxides, at zero temperature a number of non-collinear magnetic orderings are more stable than the type-I collinear ordering that is observed at finite temperatures. The emergence of non-collinear orderings in those complex oxides is due to higher-order exchange interactions that originate from second-row and third-row transition metal elements. This implies a collinear-to-noncollinear spin transition at sufficiently low temperatures in those frustrated complex oxides. Furthermore, we find that in a particular oxide Ba$_2$YOsO$_6$, experimentally feasible uniaxial strain can tune the material between two different non-collinear magnetic orderings. Our work predicts new non-collinear magnetic orderings in frustrated complex oxides at very low temperatures and provides a mechanical route to tuning complex non-collinear magnetic orderings in those materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا