Do you want to publish a course? Click here

Influence of the biquadratic interlayer coupling in the specific heat of Fibonacci magnetic multilayers

81   0   0.0 ( 0 )
 Added by Claudionor Bezerra
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theoretical study of the specific heat C(T) as a function of temperature in Fibonacci magnetic superlattices is presented. We consider quasiperiodic structures composed of ferromagnetic films, each described by the Heisenberg model, with biquadratic and bilinear coupling between them. We have taken the ratios between the biquadratic and bilinear exchange terms according to experimental data recently measured for different regions of their regime. Although some previous properties of the spin wave specific heat are also reproduced here, new features appear in this case, the most important of them being an interesting broken-symmetry related to the interlayer biquadratic term.

rate research

Read More

A theoretical study of the magnetization curves of quasiperiodic magnetic multilayers is presented. We consider structures composed by ferromagnetic films (Fe) with interfilm exchange coupling provided by intervening nonferromagnetic layers (Cr). The theory is based on a realistic phenomenological model, which includes the following contributions to the free magnetic energy: Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. The experimental parameters used here are based on experimental data recently reported, which contain sufficiently strong biquadratic exchange coupling.
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same intensive parameters but with negative specific heat are thermally coupled, they undergo a process in which the total entropy increases irreversibly. The final equilibrium is such that two phases appear, that is, the subsystems have different magnetizations and internal energies at temperatures which are equal in both systems, but that can be different from the initial temperature.
485 - E. Boscheto , M. de Souza , 2016
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit $N rightarrow infty$) non-interacting oscillators vibrating at the same frequency ($omega$). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einsteins model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying $N$.
We have studied the temperature dependence of the in-plane resistivity of NbN/AlN multilayer samples with varying insulating layer thickness in magnetic fields up to 7 Tesla parallel and perpendicular to the films. The upper critical field shows a crossover from 2D to 3D behavior in parallel fields. The irreversibility lines have the form (1-T/Tc)^alpha, where alpha varies from 4/3 to 2 with increasing anisotropy. The results are consistent with simultaneous melting and decoupling transitions for low anisotropy sample, and with melting of decoupled pancakes in the superconducting layers for higher anisotropy samples.
We propose a magnetic multilayer layout, in which the indirect exchange coupling (IEC also known as RKKY) can be switched on and off by a slight change in temperature. We demonstrate such on/off IEC switching in a Fe/Cr/FeCr-based system and obtain thermal switching widths as small as 10--20~K, essentially in any desired temperature range, including at or just above room temperature. These results add a new dimension of tunable thermal control to IEC in magnetic nanostructures, highly technological in terms of available materials and operating physical regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا