Do you want to publish a course? Click here

Molecular Beam Epitaxy of Wurtzite (Ga,Mn)N Films on Sapphire(0001) Showing the Ferromagnetic Behaviour at Room Temperature

91   0   0.0 ( 0 )
 Added by Ken-ichi Suga
 Publication date 2001
  fields Physics
and research's language is English
 Authors S.Sonoda




Ask ChatGPT about the research

Wurtzite (Ga,Mn)N films showing ferromagnetic behaviour at room temperature were successfully grown on sapphire(0001) substrates by molecular beam epitaxy using ammonia as nitrogen source. Magnetization measurements were carried out by a superconducting quantum interference device at the temperatures between 1.8K and 300K with magnetic field applied parallel to the film plane up to 7T. The magnetic-field dependence of magnetization of a (Ga,Mn)N film at 300K were ferromagnetic, while a GaN film showed Pauli paramagnetism like behaviour. The Curie temperatures of a (Ga,Mn)N film was estimated as 940K.



rate research

Read More

A range of high quality Ga1-xMnxN layers have been grown by molecular beam epitaxy with manganese concentration 0.2 < x < 10%, having the x value tuned by changing the growth temperature (Tg) between 700 and 590 {deg}C, respectively. We present a systematic structural and microstructure characterization by atomic force microscopy, secondary ion mass spectrometry, transmission electron microscopy, powder-like and high resolution X-ray diffraction, which do not reveal any crystallographic phase separation, clusters or nanocrystals, even at the lowest Tg. Our synchrotron based X-ray absorption near-edge spectroscopy supported by density functional theory modelling and superconducting quantum interference device magnetometry results point to the predominantly +3 configuration of Mn in GaN and thus the ferromagnetic phase has been observed in layers with x > 5% at 3 < T < 10 K. The main detrimental effect of Tg reduced to 590 {deg}C is formation of flat hillocks, which increase the surface root-mean-square roughness, but only to mere 3.3 nm. Fine substrates surface temperature mapping has shown that the magnitudes of both x and Curie temperature (Tc) correlate with local Tg. It has been found that a typical 10 {deg}C variation of Tg across 1 inch substrate can lead to 40% dispersion of Tc. The established here strong sensitivity of Tc on Tg turns magnetic measurements into a very efficient tool providing additional information on local Tg, an indispensable piece of information for growth mastering of ternary compounds in which metal species differ in almost every aspect of their growth related parameters determining the kinetics of the growth. We also show that the precise determination of Tc by two different methods, each sensitive to different moments of Tc distribution, may serve as a tool for quantification of spin homogeneity within the material.
Hexagonal boron nitride (hBN) has been grown on sapphire substrates by ultra-high temperature molecular beam epitaxy (MBE). A wide range of substrate temperatures and boron fluxes have been explored, revealing that high crystalline quality hBN layers are grown at high substrate temperatures, $>$1600$^circ$C, and low boron fluxes, $sim1times10^{-8}$ Torr beam equivalent pressure. emph{In-situ} reflection high energy electron diffraction (RHEED) revealed the growth of hBN layers with $60^circ$ rotational symmetry and the $[11bar20]$ axis of hBN parallel to the $[1bar100]$ axis of the sapphire substrate. Unlike the rough, polycrystalline films previously reported, atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization of these films demonstrate smooth, layered, few-nanometer hBN films on a nitridated sapphire substrate. This demonstration of high-quality hBN growth by MBE is a step towards its integration into existing epitaxial growth platforms, applications, and technologies.
74 - J. Sadowski , S. Kret , A. Siusys 2017
(Ga,Mn)As in wurtzite crystal structure, is coherently grown by molecular beam epitaxy on the {1100} side facets of wurtizte (Ga,In)As nanowires and further encapsulated by (Ga,Al)As and low temperature GaAs. For the first time a true long-range ferromagnetic magnetic order is observed in non-planar (Ga,Mn)As, which is attributed to a more effective hole confinement in the shell containing Mn by a proper selection/choice of both the core and outer shell materials.
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.
We present an experimental investigation of the magnetic, electrical and structural properties of Ga0.94Mn0.06As1-yPy layers grown by molecular beam epitaxy on GaAs substrates for y less than or equal to 0.3. X-ray diffraction measurements reveal that the layers are under tensile strain which gives rise to a magnetic easy axis perpendicular to the plane of the layers. The strength of the magnetic anisotropy and the coercive field increase as the phosphorous concentration is increased. The resistivity of all samples shows metallic behaviour with the resistivity increasing as y increases. These materials will be useful for studies of micromagnetic phenomena requiring metallic ferromagnetic material with perpendicular magnetic anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا