Do you want to publish a course? Click here

Adiabaticity in Nonlinear Quantum Dynamics: Bose-Einstein Condensate in a Temporally-Varying Box

59   0   0.0 ( 0 )
 Added by Trippenbach
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple model of an atomic Bose-Einstein condensate in a box whose size varies with time is studied to determine the nature of adiabaticity in the nonlinear dynamics obtained within the Gross-Pitaevskii equation (the nonlinear Schr{o}dinger equation). Analytical and numerical methods are used to determine the nature of adiabaticity in this nonlinear quantum system. Criteria for validity of an adiabatic approximation are formulated.



rate research

Read More

Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.
We investigate the superfluid properties of a Bose-Einstein condensate (BEC) trapped in a one dimensional periodic potential. We study, both analytically (in the tight binding limit) and numerically, the Bloch chemical potential, the Bloch energy and the Bogoliubov dispersion relation, and we introduce {it two} different, density dependent, effective masses and group velocities. The Bogoliubov spectrum predicts the existence of sound waves, and the arising of energetic and dynamical instabilities at critical values of the BEC quasi-momentum which dramatically affect its coherence properties. We investigate the dependence of the dipole and Bloch oscillation frequencies in terms of an effective mass averaged over the density of the condensate. We illustrate our results with several animations obtained solving numerically the time-dependent Gross-Pitaevskii equation.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole force of a rapidly scanning laser beam. This novel technique is very flexible and should be useful for the study of rotating Bose-Einstein condensates and vortices.
We show that nonlinear interactions induce both the Zeno and anti-Zeno effects in the generalised Bose-Josephson model (with the on-site interactions and the second-order tunneling) describing Bose-Einstein condensate in double-well trap subject to particle removal from one of the wells. We find that the on-site interactions induce textit{only} the Zeno effect, which appears at long evolution times, whereas the second-order tunneling leads to a strong decay of the atomic population at short evolution times, reminiscent of the anti-Zeno effect, and destroys the nonlinear Zeno effect due to the on-site interactions at long times.
We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا