Do you want to publish a course? Click here

Bulk Band Gaps in Divalent Hexaborides

68   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB_6 additionally provide a stringent test case for proper inclusion of many-body effects in quasi-particle band calculations.



rate research

Read More

Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band.
This paper has been withdrawn by the authors due to new theoretical evidence and experimental proof that the semiconducting bandgap reported in this paper and ascribed to a surface region is in fact a bulk property of divalent hexaborides. As reported in J. D. Denlinger et al., cond-mat/0107429, which supercedes this paper, bulk-sensitive boron K-edge soft x-ray emission provides a complementary confirmation of the X-point band gap identified by angle-resolved photoemission.
We present a study of resonant inelastic X-ray scattering (RIXS) spectra collected at the rare-earth $L$ edges of divalent hexaborides YbB$_6$ and EuB$_6$. In both systems, RIXS-active features are observed at two distinct resonances separated by $sim10$ eV in incident energy, with angle-dependence suggestive of distinct photon scattering processes. RIXS spectra collected at the divalent absorption peak strongly resemble the unoccupied 5$d$ density of states calculated using density functional theory, an occurrence we ascribe to transitions between weakly-dispersing 4$f$ and strongly dispersing 5$d$ states. In addition, anomalous resonant scattering is observed at higher incident energy, where no corresponding absorption feature is present. Our results suggest the far-reaching utility of $L$-edge RIXS in determining the itinerant-state properties of $f$-electron materials.
70 - Mingde Qin , Qizhang Yan , Yi Liu 2021
For the first time, a group of CaB6-typed cubic rare earth high-entropy hexaborides have been successfully fabricated into dense bulk pellets (>98.5% in relative densities). The specimens are prepared from elemental precursors via in-situ metal-boron reactive spark plasma sintering. The sintered bulk pellets are determined to be single-phase without any detectable oxides or other secondary phases. The homogenous elemental distributions have been confirmed at both microscale and nanoscale. The Vickers microhardness are measured to be 16-18 GPa at a standard indentation load of 9.8 N. The nanoindentation hardness and Youngs moduli have been measured to be 19-22 GPa and 190-250 GPa, respectively, by nanoindentation test using a maximum load of 500 mN. The material work functions are determined to be 3.7-4.0 eV by ultraviolet photoelectron spectroscopy characterizations, which are significantly higher than that of LaB6.
In rare-earth cage compounds, the guest 4f ion cannot be considered as fixed at the centre of its cage. As result of the electronic degeneracy of the 4f shell, single-ion or collective mechanisms can redistribute the ion inside the cage, which can be described in terms of multipolar components. These mechanisms and their influence are here discussed and illustrated in relation with the rare-earth hexaboride series. Warning: Following our oral presentation, this manuscript should have appeared in the Proceedings of SCES 2014 (SCES 2014, International Conference on Strongly Correlated Electron Systems, held 7 - 11 July 2014 in Grenoble). An infuriated referee decided otherwise stating, in substance, that ... it could corrupt the youth ... (the very few interested in this particular the subject). The casual reader is here free to appreciate how far this corruption goes...
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا