We investigated the electronic structures of the bandwidth-controlled ruthenates, Y$_{2}$Ru$_{2}$O$_{7}$, CaRuO$_{3}$, SrRuO$_{3}$, and Bi$_{2}$Ru$% _{2}$O$_{7}$, by optical conductivity analysis in a wide energy region of 5 meV $sim $ 12 eV. We could assign optical transitions from the systematic changes of the spectra and by comparison with the O 1$s$ x-ray absorption data. We estimated some physical parameters, such as the on-site Coulomb repulsion energy and the crystal-field splitting energy. These parameters show that the 4$d$ orbitals should be more extended than 3$d$ ones. These results are also discussed in terms of the Mott-Hubbard model.