No Arabic abstract
The mutual information of a single-layer perceptron with $N$ Gaussian inputs and $P$ deterministic binary outputs is studied by numerical simulations. The relevant parameters of the problem are the ratio between the number of output and input units, $alpha = P/N$, and those describing the two-point correlations between inputs. The main motivation of this work refers to the comparison between the replica computation of the mutual information and an analytical solution valid up to $alpha sim O(1)$. The most relevant results are: (1) the simulation supports the validity of the analytical prediction, and (2) it also verifies a previously proposed conjecture that the replica solution interpolates well between large and small values of $alpha$.
We analyze the Optimal Channel Network model for river networks using both analytical and numerical approaches. This is a lattice model in which a functional describing the dissipated energy is introduced and minimized in order to find the optimal configurations. The fractal character of river networks is reflected in the power law behaviour of various quantities characterising the morphology of the basin. In the context of a finite size scaling Ansatz, the exponents describing the power law behaviour are calculated exactly and show mean field behaviour, except for two limiting values of a parameter characterizing the dissipated energy, for which the system belongs to different universality classes. Two modifi
It is shown that the limit $t-ttoinfty$ of the equilibrium dynamic self-energy can be computed from the $nto 1$ limit of the static self-energy of a $n$-times replicated system with one step replica symmetry breaking structure. It is also shown that the Dyson equation of the replicated system leads in the $nto 1$ limit to the bifurcation equation for the glass ergodicity breaking parameter computed from dynamics. The equivalence of the replica formalism to the long time limit of the equilibrium relaxation dynamics is proved to all orders in perturbation for a scalar theory.
We estimated the residual entropy of ice Ih by the recently developed simulation protocol, namely, the combination of Replica-Exchange Wang-Landau algorithm and Multicanonical Replica-Exchange Method. We employed a model with the nearest neighbor interactions on the three-dimensional hexagonal lattice, which satisfied the ice rules in the ground state. The results showed that our estimate of the residual entropy is found to be within 0.038 % of series expansion estimate by Nagle and within 0.000077 % of PEPS algorithm by Vanderstraeten. In this article, we not only give our latest estimate of the residual entropy of ice Ih but also discuss the importance of the uniformity of a random number generator in MC simulations.
By combining two generalized-ensemble algorithms, Replica-Exchange Wang-Landau (REWL) method and Multicanonical Replica-Exchange Method (MUCAREM), we propose an effective simulation protocol to determine the density of states with high accuracy. The new protocol is referred to as REWL-MUCAREM, and REWL is first performed and then MUCAREM is performed next. In order to verify the effectiveness of our protocol, we performed simulations of a square-lattice Ising model by the three methods, namely, REWL, MUCAREM, and REWL-MUCAREM. The results showed that the density of states obtained by the REWL-MUCAREM is more accurate than that is estimated by the two methods separately.
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.