Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)


Abstract in English

By in-situ change of polarization a small splitting of the Zhang-Rice singlet state band near the Fermi level has been resolved for optimum doped (x=0.4) Bi$_{2}$Sr$_{2-x}$La$_{x}$CuO$_{6+delta}$ at the (pi,0)-point (R.Manzke et al. PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of the split band by photoemission in the EDC-mode with very high angular and energy resolution. The splitting into two destinct emissions could also be observed over a large portion of the major symmetry line $Gamma$M, giving the dispersion for the individual contributions. Since bi-layer effects can not be present in this single-layer material the results have to be discussed in the context of one-particle removal spectral functions derived from current theoretical models. The most prominent are microscopic phase separation including striped phase formation, coexisting antiferromagnetic and incommensurate charge-density-wave critical fluctuations coupled to electrons (hot spots) or even spin charge separation within the Luttinger liquid picture, all leading to non-Fermi liquid like behavior in the normal state and having severe consequences on the way the superconducting state forms. Especially the possibilty of observing spinon and holon excitations is discussed.

Download