Do you want to publish a course? Click here

Charge kinks as Raman scatterers in quarter-filled ladders

72   0   0.0 ( 0 )
 Added by Paul van Loosdrecht
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charge kinks are considered as fundamental excitations in quarter-filled charge-ordered ladders. The strength of the coupling of the kinks to the three-dimensional lattice depends on their energy. The integrated intensity of Raman scattering by kink-antikink pairs is proportional to $phi ^{5}$ or $phi ^{4},$ where $phi $ is the order parameter. The exponent is determined by the system parameters and by the strength of the electron-phonon coupling.



rate research

Read More

We report a novel insulator-insulator transition arising from the internal charge degrees of freedom in the two-dimensional quarter-filled organic salt beta-(meso-DMBEDT-TTF)2PF6. The optical conductivity spectra above Tc = 70 K display a prominent feature of the dimer-Mott insulator, characterized by a substantial growth of a dimer peak near 0.6 eV with decreasing temperature. The dimer-peak growth is rapidly quenched as soon as a peak of the charge order shows up below Tc, indicating a competition between the two insulating phases. Our infrared imaging spectroscopy has further revealed a spatially competitive electronic phases far below Tc, suggesting a nature of quantum phase transition driven by material-parameter variations.
149 - F. F. Assaad 2008
We use a recently developed extension of the weak coupling diagrammatic determinantal quantum Monte Carlo method to investigate the spin, charge and single particle spectral functions of the one-dimensional quarter-filled Holstein model with phonon frequency $omega_0 = 0.1 t$. As a function of the dimensionless electron-phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant $2k_f$ charge fluctuations. Emphasis is placed on the temperature dependence of the single particle spectral function. At high temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the low temperature Luttinger liquid phase we observe features which compare favorably with a bosonization approach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures shows a quasiparticle gap which matches half the spin gap whereas at temperatures above which this quasiparticle gap closes, characteristic features of the Luttinger liquid model are apparent. Our results are based on lattice simulations on chains up to L=20 for two-particle properties and on CDMFT calculations with clusters up to 12 sites for the single-particle spectral function.
In the unconventional f-electron-associated charge order phase of filled skutterudite PrRu4P12, the low-temperature behaviors of the triplet crystalline-electric-field ground state of Pr ions have been studied by specific heat and magnetization measurements using high quality single crystals. Specific heat shows an anomalous Schottky-type peak structure at 0.30 K in zero field in spite of the absence of any symmetry breaking. Magnetization curve at 0.06 K shows a remarkable rounding below 1 T. It has been revealed that these anomalies provide compelling evidence for the formation of a lattice of Pr 4f-electron-nuclear hyperfine-coupled multiplets, the first known thermodynamical observation of its kind.
Potassium-doped terphenyl has recently attracted attention as a potential host for high-transition-temperature superconductivity. Here, we elucidate the many-body electronic structure of recently synthesized potassium-doped terphenyl crystals. We show that this system may be understood as a set of weakly coupled one-dimensional ladders. Depending on the strength of the inter-ladder coupling the system may exhibit spin-gapped valence-bond solid or antiferromagnetic phases, both of which upon hole doping may give rise to superconductivity. This terphenyl-based ladder material serves as a new platform for investigating the fate of ladder phases in presence of three-dimensional coupling as well as for novel superconductivity.
Transition metal dichalcogenides (TMDs) are a class of widely studied 2D layered materials which exist in various polymorphs. The 1T phase of MoTe2 is of prime importance as it has been reported to show quantum spin hall (QSH) behavior with a fairly large band-gap of ~ 60 meV, in contrast to most QSH materials known. It is noteworthy that though the monolayer 1T-MoTe2 was initially predicted to show the QSH behavior, recent theoretical studies claim that the few-layered counterparts also exhibit higher order topological behavior. Besides, 1T-MoTe2 also undergoes a hysteretic phase transition to the Td phase (which is a type-II Weyl semimetal) by breaking the inversion symmetry of the crystal. While the phase transition between these two topological phases is of utmost importance, its study has been mostly restricted to bulk single crystal flakes, thereby not sufficiently exploring the effect of dimensionality. We have studied the phase transition in 1T-MoTe2 as a function of flake-thickness. Though our Raman studies show a suppression of the phase transition in the thin (thickness <10 nm) flakes [similar to the report Phys. Rev. B 97, 041410 (2018)], we have experimentally demonstrated the possibility of stabilizing the desired phase (1T or Td) at room temperature by charge doping. Further, we have observed clear signatures of electron-phonon coupling in MoTe2, which evolves as a function of flake-thickness and charge doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا