Evidence for Braggoriton Excitations in Opal Photonic Crystals Infiltrated with Highly Polarizable Dyes


Abstract in English

We studied angle-dependent reflectivity spectra of opal photonic crystals infiltrated with cyanine dyes, which are highly polarizable media with very large Rabi frequency. We show that when resonance conditions between the exciton-polariton of the infiltrated dye and Bragg frequencies exist, then the Bragg stop band decomposes into two reflectivity bands with a semi-transparent spectral range in between that is due to light propagation inside the gap caused by the existence of braggoriton excitations. These novel excitations result from the interplay interaction between the Bragg gap with spatial modulation origin and the polariton gap due to the excitons, and may lead to optical communication traffic inside the gap of photonic crystals via channel waveguiding.

Download