Do you want to publish a course? Click here

Acoustoelectric pumping through a ballistic point contact in the presence of magnetic fields

104   0   0.0 ( 0 )
 Added by Entin-Wohlman
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The acoustoelectric current, J, induced in a ballistic point contact (PC) by a surface acoustic wave is calculated in the presence of a perpendicular magnetic field, B. It is found that the dependence of the current on the Fermi energy in the terminals is strongly correlated with that of the PC conductance: J is small at the conductance plateaus, and is large at the steps. Like the conductance, the acoustoelectric current has the same functional behavior as in the absence of the field, but with renormalized energy scales, which depend on the strength of the magnetic field, | B|.



rate research

Read More

We study the superconducting proximity effect in an InAs nanowire contacted by Ta-based superconducting electrodes. Using local bottom gates, we control the potential landscape along the nanowire, tuning its conductance to a quasi-ballistic regime. At high magnetic field ($B$), we observe approximately quantized conductance plateaus associated with the first two spin-polarized one-dimensional modes. For $B < 1$ T, the onset of superconductivity occurs in concomitance with the development of sizeable charge localization leading to a 0.7-type conductance anomaly. In this regime, the proximity supercurrent exhibits an unusual, non-monotonic $B$ dependence. We interpret this finding in terms of a competition between the Kondo effect, dominating near $B=0$, and the Zeeman effect, enforcing spin polarization and the emergence of a $pi$ phase shift in the Josephson relation at higher $B$.
The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etched side gates permits, in combination with the application of a perpendicular magnetic field, to modify continuously the magnetic interference pattern by depleting the weak link. For wider junctions the supercurrent presents a Fraunhofer-like interference pattern with periodicity h/2e whereas by shrinking electrostatically the weak link, the periodicity evolves continuously to a monotonic decay. These devices represent novel tunable structures that might lead to the study of the elusive Majorana fermions.
We study transport of noninteracting fermions through a periodically driven quantum point contact (QPC) connecting two tight-binding chains. Initially, each chain is prepared in its own equilibrium state, generally with a bias in chemical potentials and temperatures. We examine the heating rate (or, alternatively, energy increase per cycle) in the nonequilibrium time-periodic steady state established after initial transient dynamics. We find that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We first establish this fact for a particular type of QPC where the heating rate can be calculated analytically. Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally, we derive this effect perturbatively in leading order for cases when the QPC Hamiltonian can be considered as a small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle also vanishes above the critical frequency, despite a persistent bias. This shows that a driven QPC can act as a frequency-controlled quantum switch.
Linear and non-linear transport properties through an atomic-size point contact based on oxides two-dimensional electron gas is examined using the tight-binding method and the $mathbf{kcdot p}$ approach. The ballistic transport is analyzed in contacts realized at the (001) interface between band insulators $LaAlO_3$ and $SrTiO_3$ by using the Landauer-Buttiker method for many sub-bands derived from three Ti 3d orbitals ($d_{yz}$, $d_{zx}$ and $d_{xy}$) in the presence of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and the inversion symmetry breaking term pointing out three transport regimes: the first, at low energies, involving the first $d_{xy}$-like sub-bands, where the conductance quantization is robust; a second one, at intermediate energies, entailing further $d_{xy}$-like sub-bands, where the sub-band splitting induced by the magnetic field is quenched; the third one, where the mixing between light $d_{xy}$-like, heavy $d_{yz}$-like and $d_{zx}$-like sub-bands is so strong that the conductance plateaus turn out to be very narrow. Very good agreement is found with recent experiments exploring the transport properties at low energies.
48 - Fuming Xu , Yanxia Xing , 2017
We numerically study the parametric pumped current when magnetic field is applied both in the adiabatic and non-adiabatic regimes. In particular, we investigate the nature of pumped current for systems with resonance as well as anti-resonance. It is found that in the adiabatic regime, the pumped current changes sign across the sharp resonance with long lifetime while the non-adiabatic pumped current at finite frequency does not. When the lifetime of resonant level is short, the behaviors of adiabatic and non-adiabatic pumped current are similar with sign changes. Our results show that at the energy where complete transmission occurs the adiabatic pumped current is zero while non-adiabatic pumped current is non-zero. Different from the resonant case, both adiabatic and non-adiabatic pumped current are zero at anti-resonance with complete reflection. We also investigate the pumped current when the other system parameters such as magnetic field, pumped frequency, and pumping potentials. Interesting behaviors are revealed. Finally, we study the symmetry relation of pumped current for several systems with different spatial symmetry upon reversal of magnetic field. Different from the previous theoretical prediction, we find that a system with general inversion symmetry can pump out a finite current in the adiabatic regime. At small magnetic field, the pumped current has an approximate relation I(B) approx I(-B) both in adiabatic and non-adiabatic regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا