Do you want to publish a course? Click here

Dendritic magnetic instability in superconducting MgB2 films

115   0   0.0 ( 0 )
 Added by Yuri M. Galperin
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magneto-opitcal studies of a c-oriented epitaxial MgB2 film show that below 10 K the global penetration of vortices is dominated by complex dendritic structures abruptly entering the film. We suggest that the observed behavior is due to a thermo-magnetic instability which is supported by vortex dynamics simulations. The instability is also responsible for large fluctuations in the magnetization curves in MgB2 at low temperatures.



rate research

Read More

Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.
We present numerical and analytical studies of coupled nonlinear Maxwell and thermal diffusion equations which describe nonisothermal dendritic flux penetration in superconducting films. We show that spontaneous branching of propagating flux filaments occurs due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heat generation. The branching is triggered by a thermomagnetic edge instability which causes stratification of the critical state. The resulting distribution of magnetic microavalanches depends on a spatial distribution of defects. Our results are in good agreement with experiments performed on Nb films.
We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.
Larkin and Ovchinnikov established that the viscous flow of magnetic flux quanta in current-biased superconductor films placed in a perpendicular magnetic field can lose stability due to a decrease in the vortex viscosity coefficient $eta$ with increasing velocity of the vortices $v$. The dependence of $eta$ on $v$ leads to a $nonlinear$ section in the current-voltage ($I$-$V$) curve which ends at the flux-flow instability point with a voltage jump to a highly resistive state. At the same time, in contradistinction with the nonlinear conductivity regime, instability jumps often occur in $linear$ $I$-$V$ sections. Here, for the elucidation of such jumps we develop a theory of local instability of the magnetic flux flow occurring not in the entire film but in a narrow strip across the film width in which vortices move much faster than outside it. The predictions of the developed theory are in agreement with experiments on Nb films for which the heat removal coefficients and the inelastic scattering times of quasiparticles are deduced. The presented model of local instability is also relevant for the characterization of superconducting thin films whose performance is examined for fast single-photon detection.
Precursor MgB2 thin films were prepared on sapphire substrates by magnetron sputtering. Influence of ex-situ annealing process on superconducting MgB2 thin films roughness is discussed. Optimized annealing process of MgB precursor thin films in vacuum results in smooth superconducting MgB2 thin films with roughness below 10 nm, critical temperature Tcon = 31 K and transition width DTc less than 1 K. Nano-bridges based on the superconducting MgB2 thin films using optical and Focused Ion Beam lithography were prepared. Critical current density jc (4.2 K) measured on 50 nm wide strip was 7.3x106 A/cm2 and no significant loss of superconducting properties was detected. Resistance vs. temperature and critical current vs. temperature characteristics were measured on these structures using standard DC four probe measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا