We study a model for an argon-like fluid parameterised in terms of a hard-core repulsion and a two-Yukawa potential. The liquid-gas phase behaviour of the model is obtained from the thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) of Hoye and Stell, the solution of which lends itself particularly well to a pair potential of this form. The predictions for the critical point and the coexistence curve are compared to new high resolution simulation data and to other liquid-state theories, including the hierarchical reference theory (HRT) of Parola and Reatto. Both SCOZA and HRT deliver results that are considerably more accurate than standard integral-equation approaches. Among t