Do you want to publish a course? Click here

The low-lying excitations of polydiacetylene

61   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.



rate research

Read More

A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest $(I=1/2,J^P = 1/2^pm)$ baryon isospin-doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically-active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest $(1/2,1/2^+)$ doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely $S$-wave in nature; and the first excited state in this $1/2^+$ channel has the appearance of a radial excitation of the ground state. The two lightest $(1/2,1/2^-)$ doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly $P$-wave in nature, but possess measurable $S$-wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest $(1/2,1/2^pm)$ doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
Isospin properties of dipole excitations in 74 Ge are investigated using the ({alpha},{alpha}{gamma}) reaction and compared to ({gamma},{gamma}) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E1 strength with an increase in excitation energy, which is consistent with the measurement.
Focusing on a quantum-limit behavior, we study a single vortex in a clean s-wave type-II superconductor by self-consistently solving the Bogoliubov-de Gennes equation. The discrete energy levels of the vortex bound states in the quantum limit is discussed. The vortex core radius shrinks monotonically up to an atomic-scale length on lowering the temperature T, and the shrinkage stops to saturate at a lower T. The pair potential, supercurrent, and local density of states around the vortex exhibit Friedel-like oscillations. The local density of states has particle-hole asymmetry induced by the vortex. These are potentially observed directly by STM.
Stimulated by the newly discovered $Omega(2012)$ resonance at Belle II, in this work we have studied the OZI allowed strong decays of the low-lying $1P$- and $1D$-wave $Omega$ baryons within the $^3P_0$ model. It is found that $Omega(2012)$ is most likely to be a $1P$-wave $Omega$ state with $J^P=3/2^-$. We also find that the $Omega(2250)$ state could be assigned as a $1D$-wave state with $J^P=5/2^+$. The other missing $1P$- and $1D$-wave $Omega$ baryons may have large potentials to be observed in their main decay channels.
Low lying excitations of electron liquids in the fractional quantum Hall (FQH) regime are studied by resonant inelastic light scattering methods. We present here results from charge and spin excitations of FQH states in the lowest spin-split Landau levels that are of current interest. In the range of filling factors $2/5 geq u geq 1/3$, we find evidence that low energy quasiparticle excitations can be interpreted with spin-split composite fermion quasi-Landau levels. At FQH states around $ u=3/2$, we find well-defined excitations at 4/3 and 8/5 that are consistent with a spin-unpolarized population of quasi-Landau levels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا