Do you want to publish a course? Click here

Incoherent Interplane Conductivity of kappa-(BEDT-TTF)2Cu[N(CN)2]Br

97   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English
 Authors J. J. McGuire




Ask ChatGPT about the research

The interplane optical spectrum of the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40 to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig analysis of the reflectance. The absence of a Drude peak at low frequency is consistent with incoherent conductivity but in apparent contradiction to the metallic temperature dependence of the DC resistivity. We set an upper limit to the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted interplane transport can account for this discrepancy. We also assign the phonon lines in the conductivity to the asymmetric modes of the ET molecule.



rate research

Read More

Static susceptibility of kappa-[(BEDT-TTF)1-x(BEDSe-TTF)x]2Cu[N(CN)2]Br alloys with the BEDSe-TTF content near the border-line of ambient pressure superconductivity (x~0.3) has been measured as a function of temperature, magnetic field, and pressure. A non-monotonic pressure dependence is observed for both the superconducting critical temperature and superconducting volume fraction, with both quantities showing growth under pressure in the initial pressure range P < 0.3 kbar. The results are discussed in comparison with the data on the related kappa-phase BEDT-TTF superconductors in which not a cation but anion sublattice is modified by alloying, namely the family kappa-(BEDT-TTF)2Cu[N(CN)2]Cl1-xBrx. PACS numbers: 74.62.Fj, 74.70.Kn.
A muon-spin relaxation (muSR) investigation is presented for the molecular superconductor kappa-(BEDT-TTF)2Cu[N(CN)2Br]. Evidence is found for low-temperature phase-separation, with only a fraction of the sample showing a superconducting signal, even for slow cooling. Rapid cooling reduces the superconducting fraction still further. For the superconducting phase, the in-plane penetration depth is measured to be lambda_{parallel} = 0.47(1) mu m and evidence is seen for a vortex decoupling transition in applied fields above 40 mT. The magnetic fluctuations in the normal state produce Korringa behavior of the muon spin relaxation rate below 100 K, a precipitous drop in relaxation rate is seen at higher temperatures and an enhanced local spin susceptibility occurs just above T_c.
The thermal conductivity of organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2 (Tc =10.4 K) has been studied in a magnetic field rotating within the 2D superconducting planes with high alignment precision. At low temperatures (T < 0.5 K), a clear fourfold symmetry in the angular variation, which is characteristic of a d-wave superconducting gap with nodes along the directions rotated 45 degrees relative to the b and c axes of the crystal, was resolved. The determined nodal structure is inconsistent with recent theoretical predictions of superconductivity induced by the antiferromagnetic spin fluctuation.
The magnetic field effect on the phase diagram of the organic Mott system $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br in which the bandwidth was tuned by the substitution of deuterated molecules was studied by means of the resistivity measurements performed in magnetic fields. The lower critical point of the first-order Mott transition, which ended on the upper critical field $H_{rm c2}$-temperature plane of the superconductivity, was determined experimentally in addition to the previously observed upper critical end point. The lower critical end point moved to a lower temperature with the suppression of $T_{rm c}$ in magnetic fields and the Mott transition recognized so far as the $S$-shaped curve reached $T =$ 0 when $H > H_{rm c2}$ in the end.
125 - T. Kobayashi , Y. Ihara , Y. Saito 2014
We performed $^{13}$C-NMR experiment and measured spin-lattice relaxation rate divided by temperature $1/T_{1}T$ near the superconducting (SC) transition temperature $T_{c}$ in $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br ($kappa$-Br salt), and $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$ ($kappa$-NCS salt). We observed the reduction of $1/T_{1}T$ starting at the temperature higher than $T_c$ in $kappa$-Br salt. Microscopic observation of quasi-particle density of states in the fluctuating SC state revealed the effects of short-range Cooper pairs induced in the normal state to the quasi-particle density of states. We also performed systematic measurements in the fields both parallel and perpendicular to the conduction plane in $kappa$-Br and $kappa$-NCS salts, and confirmed that the reduction of $1/T_{1}T$ above $T_{c}$ is observed only in $kappa$-Br salt regardless of the external field orientation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا