Response to tilted magnetic fields in Bi2Sr2CaCu2O8 with columnar defects: Evidence for transverse Meissner effect


Abstract in English

The transverse Meissner effect (TME) in the highly layered superconductor Bi2Sr2CaCu2O(8+y) with columnar defects is investigated by transport measurements. We present detailed evidence for the persistence of the Bose-glass phase when H is tilted at an angle theta < theta_c (T) away from the column direction: (i) the variable-range vortex hopping process for low currents crosses over to the half-loops regime for high currents; (ii) in both regimes near theta_c(T) the energy barriers vanish linearly with tan(theta) ; (iii) the transition temperature is governed by T_{BG}(0) -T_{BG}(theta) sim |tan(theta)|^{1/ u_{perp}} with u_{perp}=1.0 +/- 0.1. Furthermore, above the transition as theta->theta_c+, moving kink chains consistent with a commensurate-incommensurate transition scenario are observed. These results thereby clearly show the existence of the TME for theta < theta_c(T).

Download