The influence of turbulent effects on a fluid flow through a (pseudo) porous media is studied by numerically solving the set of Reynolds-averaged Navier-Stokes equations with the $kappa$-$epsilon$ model for turbulence. The spatial domains are two-dimensional rectangular grids with different {it porosities} obtained by the random placing of rigid obstacles. The objective of the simulations is to access the behavior of the generalized friction factor with varying Reynolds number. A good agreement with the Forchheimers equation is observed. The flow distribution at both low and high Reynolds conditions is also analyzed.