In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in the zero-doping limit where a bare hole can lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between.