Do you want to publish a course? Click here

Structural Relaxation, Self Diffusion and Kinetic Heterogeneity in the Two Dimensional Lattice Coulomb Gas

62   0   0.0 ( 0 )
 Added by Sung Jong Lee
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Monte Carlo simulation results on the equilibrium relaxation dynamics in the two dimensional lattice Coulomb gas, where finite fraction $f$ of the lattice sites are occupied by positive charges. In the case of high order rational values of $f$ close to the irrational number $1-g$ ($gequiv(sqrt{5} -1)/2$ is the golden mean), we find that the system exhibits, for wide range of temperatures above the first-order transition, a glassy behavior resembling the primary relaxation of supercooled liquids. Single particle diffusion and structural relaxation show that there exists a breakdown of proportionality between the time scale of diffusion and that of structural relaxation analogous to the violation of the Stokes-Einstein relation in supercooled liquids. Suitably defined dynamic cooperativity is calculated to exhibit the characteristic nature of dynamic heterogeneity present in the system.



rate research

Read More

72 - S. J. Lee 1998
We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional power law relation between the self-diffusion coefficient and the characteristic relaxation time. The microscopic spatially heterogeneous structure responsible for the violation is identified.
We characterize the universal far-from-equilibrium dynamics of the isolated two-dimensional quantum Heisenberg model. For a broad range of initial conditions, we find a long-lived universal prethermal regime characterized by self-similar behavior of spin-spin correlations. We analytically derive the spatial-temporal scaling exponents and find excellent agreement with numerics using phase space methods. The scaling exponents are insensitive to the choice of initial conditions, which include coherent and incoherent spin states as well as values of magnetization and energy in a wide range. Compared to previously studied self-similar dynamics in non-equilibrium $O(n)$ field theories and Bose gases, we find qualitatively distinct scaling behavior originating from the presence of spin modes which remain gapless at long times and which are protected by the global SU(2) symmetry. Our predictions, which suggest a new non-equilibrium universality class, are readily testable in ultra-cold atoms simulators of Heisenberg magnets.
82 - H Chamati , S Romano 2007
We have considered two classical lattice-gas models, consisting of particles that carry multicomponent magnetic momenta, and associated with a two-dimensional square lattices; each site can host one particle at most, thus implicitly allowing for hard-core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic and involves only two components. The case of zero chemical potential has been investigated by Grand--Canonical Monte Carlo simulations; the fluctuating occupation numbers now give rise to additional fluid-like observables in comparison with the usual saturated--lattice situation; these were investigated and their possible influence on the critical behaviour was discussed. Our results show that the present model supports a Berezinskii-Kosterlitz-Thouless phase transition with a transition temperature lower than that of the saturated lattice counterpart due to the presence of ``vacancies; comparisons were also made with similar models studied in the literature.
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid-liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown to present up to three-fold variations from solid to liquid phases at fixed temperature, while the radial distribution function corresponding to both the liquid and the solid phases are essentially indistinguishable.
We numerically investigate the long-time behavior of the density-density auto-correlation function in driven lattice gases with particle exclusion and periodic boundary conditions in one, two, and three dimensions using precise Monte Carlo simulations. In the one-dimensional asymmetric exclusion process on a ring with half the lattice sites occupied, we find that correlations induce extremely slow relaxation to the asymptotic power law decay. We compare the crossover functions obtained from our simulations with various analytic results in the literature, and analyze the characteristic oscillations that occur in finite systems away from half-filling. As expected, in three dimensions correlations are weak and consequently the mean-field description is adequate. We also investigate the relaxation towards the nonequilibrium steady state in the two-time density-density auto-correlations, starting from strongly correlated initial conditions. We obtain simple aging scaling behavior in one, two, and three dimensions, with the expected power laws.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا