Do you want to publish a course? Click here

Intrinsic friction of adsorbed monolayers

170   0   0.0 ( 0 )
 Added by Oshanin
 Publication date 2001
  fields Physics
and research's language is English
 Authors O.Benichou




Ask ChatGPT about the research

In the present paper we overview our recent results on intrinsic frictional properties of adsorbed monolayers, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. Within the framework of a dynamical master equation approach, describing the time evolution of the system, we determine in the most general form the terminal velocity of some biased impure molecule - the tracer particle (TP), constrained to move inside the adsorbed monolayer probing its frictional properties, define the frictional forces as well as the particles density distribution in the monolayer. Results for one-dimensional solid substrates, appropriate to adsorbtion on polymer chains, are compared against the Monte Carlo simulation data, which confirms our analytical predictions.

rate research

Read More

74 - O.Benichou 2003
We overview recent results on intrinsic frictional properties of adsorbed monolayers, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. In terms of a dynamical master equation approach we determine the velocity of a biased impure molecule - the tracer particle (TP), constrained to move inside the adsorbed monolayer probing its frictional properties, define the frictional forces exerted by the monolayer on the TP, as well as the particles density distribution in the monolayer.
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat bath for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
82 - D. Abel , S. Yu. Krylov , 2007
We analyze an advanced two-spring model with an ultra-low effective tip mass to predict nontrivial and physically rich fine structure in the atomic stick-slip motion in Friction Force Microscopy (FFM) experiments. We demonstrate that this fine structure is present in recent, puzzling experiments. This shows that the tip apex can be completely or partially delocalized, thus shedding new light on what is measured in FFM and, possibly, what can happen with the asperities that establish the contact between macroscopic sliding bodies.
Using cyclic shear to drive a two dimensional granular system, we determine the structural characteristics for different inter-particle friction coefficients. These characteristics are the result of a competition between mechanical stability and entropy, with the latters effect increasing with friction. We show that a parameter-free maximum-entropy argument alone predicts an exponential cell order distribution, with excellent agreement with the experimental observation. We show that friction only tunes the mean cell order and, consequently, the exponential decay rate and the packing fraction. We further show that cells, which can be very large in such systems, are short-lived, implying that our systems are liquid-like rather than glassy.
The way granular materials response to an applied shear stress is of the utmost relevance to both human activities and natural environment. One of the their most intriguing and less understood behavior, is the stick-instability, whose most dramatic manifestation are earthquakes, ultimately governed by the dynamics of rocks and debris jammed within the fault gauge. Many of the features of earthquakes, i.e. intermittency, broad times and energy scale involved, are mimicked by a very simple experimental set-up, where small beads of glass under load are slowly sheared by an elastic medium. Analyzing data from long lasting experiments, we identify a critical dynamical regime, that can be related to known theoretical models used for crackling-noise phenomena. In particular, we focus on the average shape of the slip velocity, observing a breakdown of scaling: while small slips show a self-similar shape, large does not, in a way that suggests the presence of subtle inertial effects within the granular system. In order to characterise the crossover between the two regimes, we investigate the frictional response of the system, which we trat as a stochastic quantity. Computing different averages, we evidence a weakening effect, whose Stribeck threshold velocity can be related to the aforementioned breaking of scaling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا