We simulate solidification in a narrow channel through the use of a phase-field model with an adaptive grid. In different regimes, we find that the solid can grow in fingerlike steady-state shapes, or become unstable, exhibiting unsteady growth. At low melt undercoolings, we find good agreement between our results, theoretical predictions, and experiment. For high undercoolings, we report evidence for a new stable steady-state finger shape which exists in experimentally accessible ranges for typical materials.