Do you want to publish a course? Click here

Magnetoplasmon excitations in an array of periodically modulated quantum wires

63   0   0.0 ( 0 )
 Added by Brandon P. van Zyl
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.



rate research

Read More

We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.
85 - B. P. van Zyl , E. Zaremba , 1999
We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizsacker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to $C_4$ results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.
We have investigated microwave transmission through the edge of quantum Hall systems by employing a coplanar waveguide (CPW) fabricated on the surface of a GaAs/AlGaAs two-dimensional electron gas (2DEG) wafer. An edge is introduced to the slot region of the CPW by applying a negative bias $V_mathrm{g}$ to the central electrode (CE) and depleting the 2DEG below the CE. We observe peaks attributable to the excitation of edge magnetoplasmons (EMP) at a fundamental frequency $f_0$ and at its harmonics $i f_0$ ($i$ = 2, 3,...). The frequency $f_0$ increases with decreasing $V_mathrm{g}$, indicating that EMP propagates with higher velocity for more negative $V_mathrm{g}$. The dependence of $f_0$ on $V_mathrm{g}$ is interpreted in terms of the variation in the distance between the edge state and the CE, which alters the velocity by varying the capacitive coupling between them. The peaks are observed to continue, albeit with less clarity, up to the regions of $V_mathrm{g}$ where 2DEG still remains below the CE.
80 - Manvir S. Kushwaha 2019
A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective excitations in a quantum wire made-up of vertically stacked, self-assembled InAs/GaAs quantum dots in the presence of an applied magnetic field in the symmetric gauge. We compute and illustrate the influence of an applied magnetic field on the behavior characteristics of the density of states, Fermi energy, and collective (magnetoplasmon) excitations [obtained within the framework of random-phase approximation (RPA)]. The Fermi energy is observed to oscillate as a function of the Bloch vector. Remarkably, the intersubband single-particle continuum splits into two with a collective excitation propagating within the gap. This is attributed to the (orbital) quantum number owing to the applied magnetic field. Strikingly, the alteration in the well- and barrier-widths can enable us to customize the excitation spectrum in the desired energy range. These findings demonstrate, for the very first time, the viability and importance of studying the VSQD subjected to an applied magnetic field. The technological promise that emerges is the route to devices exploiting magnetoplasmon qubits as the potential option in designing quantum gates for the quantum communication networks.
228 - Manvir S. Kushwaha 2013
A theoretical investigation has been made of the magnetoplasmon excitations in a quantum wire characterized by a confining harmonic potential and subjected to a perpendicular magnetic field. We study the (nonlocal, dynamic) inverse dielectric function to examine the charge-density excitations within a two-subband model in the framework of Bohm-Pines random-phase approximation. A particular stress is put on the (intersubband) magnetoroton excitation which changes the sign of its group velocity twice before merging with the respective single-particle continuum. It has already been suggested that the electronic device based on such magnetoroton excitations can act as an {it active} laser medium [see, e.g., Phys. Rev. B {bf 78}, 153306 (2008)]. Scrutinizing the real and imaginary parts of the inverse dielectric function provides us with an important information on the longitudinal and transverse (Hall) resistances of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا