Do you want to publish a course? Click here

Lattice Resistance and Peierls Stress in Finite-size Atomistic Dislocation Simulations

70   0   0.0 ( 0 )
 Added by David L. Olmsted
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomistic computations of the Peierls stress in fcc metals are relatively scarce. By way of contrast, there are many more atomistic computations for bcc metals, as well as mixed discrete-continuum computations of the Peierls-Nabarro type for fcc metals. One of the reasons for this is the low Peierls stresses in fcc metals. Because atomistic computations of the Peierls stress take place in finite simulation cells, image forces caused by boundaries must either be relaxed or corrected for if system size independent results are to be obtained. One of the approaches that has been developed for treating such boundary forces is by computing them directly and subsequently subtracting their effects, as developed by V. B. Shenoy and R. Phillips [Phil. Mag. A, 76 (1997) 367]. That work was primarily analytic, and limited to screw dislocations and special symmetric geometries. We extend that work to edge and mixed dislocations, and to arbitrary two-dimensional geometries, through a numerical finite element computation. We also describe a method for estimating the boundary forces directly on the basis of atomistic calculations. We apply these methods to the numerical measurement of the Peierls stress and lattice resistance curves for a model aluminum (fcc) system using an embedded-atom potential.



rate research

Read More

132 - David L. Olmsted 2004
Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In the pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest forbidden speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.
In this letter we propose a model that demonstrates the effect of free surface on the lattice resistance experienced by a moving dislocation in nanodimensional systems. This effect manifests in an enhanced velocity of dislocation due to the proximity of the dislocation line to the surface. To verify this finding, molecular dynamics simulations for an edge dislocation in bcc molybdenum are performed and the results are found to be in agreement with the numerical implementations of this model. The reduction in this effect at higher stresses and temperatures, as revealed by the simulations, confirms the role of lattice resistance behind the observed change in the dislocation velocity.
We present a combined study by Scanning Tunneling Microscopy and atomistic simulations of the emission of dissociated dislocation loops by nanoindentation on a (001) fcc surface. The latter consist of two stacking-fault ribbons bounded by Shockley partials and a stair-rod dislocation. These dissociated loops, which intersect the surface, are shown to originate from loops of interstitial character emitted along the <110> directions and are usually located at hundreds of angstroms away from the indentation point. Simulations reproduce the nucleation and glide of these dislocation loops.
We use three-dimensional discrete dislocation dynamics simulations (DDD) to study the evolution of interfacial dislocation network (IDN) in particle-strengthened alloy systems subjected to constant stress at high temperatures. We have modified the dislocation mobility laws to incorporate the recovery of the dislocation network by the climb. The microstructure consists of uniformly distributed cuboidal inclusions embedded in the simulation box. Based on the systematic simulations of IDN formation as a function of applied stress for prescribed inter-particle spacing and glide-to-climb mobility ratio, we derive a relation between effective stress and normalized dislocation density. We use link-length analysis to show self-similarity of immobile dislocation links irrespective of the level of applied stress. Moreover, we derive the dependence of effective stress on the ratio between mobile to immobile dislocation density based on the Taylor relation for strain hardening materials. We justify the relation with the help of a theoretical model which takes into account the balance of multiplication and annihilation rates of dislocation density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا