No Arabic abstract
We have studied structural, magnetic and transport properties as a function of temperature and magnetic field in the electron doped manganite YxCa1-xMnO3, for 0<x<0.25. We found that in the paramagnetic regime, the magnetic susceptibility, chi, deviates substantially from a Curie-Weiss law for x>0. With a simple model where antiferromagnetic (AF) superexchange and ferromagnetic (FM) double exchange (DE) compete, we fit the experimental chi(x, T) obtaining parameter values which indicate that the FM-DE interaction is about twice as intense as the AF interaction. In the ordered phase, the H-dependence of the magnetization M(x,T) is explained in terms of magnetic polarons. We propose that the displacement of the eg electrons (in the G-type AF background) causes the alignement of the polaron with H. Signatures of polaronic behavior were also found in the x and T dependence of the electric resistivity.
We present a study of the magnetic properties of the electron doped manganites Ca1-xYxMnO3 (for 0<=x<=0.25) in the paramagnetic regime. For the less doped samples (x<=0.1) the magnetic susceptibility, c(T), follows a Curie-Weiss (CW) law only for T > 450 K and, below this temperature, c^-1(T) shows a ferrimagnetic-like curvature. We approached the discussion of these results in terms of a simple mean-field model where double exchange, approximated by a ferromagnetic Heisenberg-like interaction between Mn3+ and Mn4+ ions, competes with classical superexchange. For higher levels of doping (x>=0.15), the CW behaviour is observed down to the magnetic ordering temperature (Tmo) and a better description of c(T) was obtained by assuming full delocalization of the eg electrons. In order to explore the degree of delocalization as a function of T and x, we analyzed the problem through Montecarlo simulations. Within this picture we found that at high T the electrons doped are completely delocalized but, when Tmo is approached, they form magnetic polarons of large spin that cause the observed curvature in c^-1(T) for x<=0.1.
The coexistence of ferromagnetism and metallic conduction in doped manganites has long been explained by a double-exchange model in which the ferromagnetic exchange arises from the carrier hopping. We evaluate the zero-temperature spin stiffness D(0) and the Curie temperature T_{C} on the basis of the double-exchange model using the measured values of the bare bandwidth W and the Hunds rule coupling J_{H}. The calculated D(0) and T_{C} values are too small compared with the observed ones even in the absence of interactions. A realistic onsite interorbital Coulomb repulsion can reduce D(0) substantially in the case of a 2-orbital model. Furthermore, experiment shows that D(0) is simply proportional to x in La_{1-x}Sr_{x}MnO_{3} system, independent of whether the ground state is a ferromagnetic insulator or metal. These results strongly suggest that the ferromagnetism in manganites does not originate from the double-exchange interaction. On the other hand, an alternative model based on the d-p exchange can semi-quantitatively explain the ferromagnetism of doped manganites at low temperatures.
We report here the magnetic properties of electron-doped Sm1-xCaxMnO3 manganites with the doping level of x=0.91. Exchange bias effect has been observed in Sm0.09Ca0.91MnO3 nanomanagnites system and can be tuned by the strength of cooling magnetic field (Hcool). The values of exchange bias parameter i.e. exchange bias fields (HE), coercivity (HC), remanence asymmetry (ME) and magnetic coercivity (MC) are found to strongly depend on Hcool. The larger effective magnetic moments and deviation of inverse susceptibility (c{hi}-1) from Curie-Weiss law indicate the possible existence of Griffiths phase (GP). A rigorous measurement of linear and nonlinear ac and dc magnetic susceptibility in nanomanganites proves the existence of Griffiths phase (GP) in the temperature range TC<T<TG (Griffiths temperature). The effect of size reduction on exchange bias effect and GP is addressed here. The enhancement of exchange bias effect and GP has been argued to be due to the modification of the phase separated state on size reduction.
We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control.
We review our recent x-ray scattering studies of charge and orbital order in doped manganites, with specific emphasis on the role of orbital correlations in Pr_1-xCa_xMnO_3. For x=0.25, we find an orbital structure indistinguishable from the undoped structure with long range orbital order at low temperatures. For dopings 0.3<x<0.5, we find scattering consistent with a charge and orbitally ordered CE-type structure. While in each case the charge order peaks are resolution limited, the orbital order exhibits only short range correlations. We report the doping dependence of the correlation length and discuss the connection between the orbital correlations and the finite magnetic correlation length observed on the Mn^3+ sublattice with neutron scattering techniques. The physical origin of these domains, which appear to be isotropic, remains unclear. We find that weak orbital correlations persist well above the phase transitions, with a correlation length of 1-2 lattice constants at high temperatures. Significantly, we observe similar correlations at high temperatures in La_0.7Ca_0.3MnO_3, which does not have an orbitally ordered ground state, and we conclude that such correlations are robust to variations in the relative strength of the electron-phonon coupling.