Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates


Abstract in English

The dynamics of vortices in trapped Bose-Einstein condensates are investigated both analytically and numerically. In axially symmetric traps, the critical rotation frequency for the metastability of an isolated vortex coincides with the largest vortex precession frequency (or anomalous mode) in the Bogoliubov excitation spectrum. As the condensate becomes more elongated, the number of anomalous modes increases. The largest frequency of these modes exceeds both the thermodynamic critical frequency and the nucleation frequency at which vortices are created dynamically. Thus, anomalous modes describe not only the critical rotation frequency for creation of the first vortex in an elongated condensate but also the vortex precession in a single-component spherical condensate.

Download