Comment on Low Temperature Magnetic Instabilities in Triply Charged Fulleride Polymers by D. Arcon et al., PRL 84, 562 (2000)


Abstract in English

Recently, Arcon et al. reported ESR studies of the polymer phase (PP) of Na_{2}Rb_{0.3}Cs_{0.7}C_{60} fulleride. It was claimed that this phase is a quasi-one-dimensional metal above 45 K with a spin-gap below this temperature and has antiferromagnetic(AF) order below 15 K, that is evidenced by antiferromagnetic resonance(AFMR). For the understanding of the rich physics of fullerides it is important to identify the different ground states. ESR has proven to be a useful technique for this purpose. However, since it is a very sensitive probe, it can detect a multitude of spin species and it is not straightforward to identify their origin, especially in a system like Na_{2}Rb_{x}Cs_{1-x}C_{60} with three dopants, when one part of the sample polymerizes but the majority does not. The observation of a low dimensional instability in the single bonded PP would be a novel and important result. Nevertheless, in this Comment we argue that Na_{2}Rb_{0.3}Cs_{0.7}C_{60} is not a good choice for this purpose since, as we show, the samples used by Arcon et al. are inhomogeneous. We point out that recent results on the PP of Na_{2}CsC_{60} contradicts the observation of low dimensional instabilities in Na_{2}Rb_{0.3}Cs_{0.7}C_{60}.

Download