Do you want to publish a course? Click here

Andreev-reflection and Point-Contact Spectroscopy of Superconducting Rare Earth Transition Metal Borocarbides

174   0   0.0 ( 0 )
 Added by Igor Yanson
 Publication date 2000
  fields Physics
and research's language is English
 Authors I.K. Yanson




Ask ChatGPT about the research

The superconducting energy gap and quasiparticle density of states (DOS) is measured by means of Andreev-reflection spectroscopy in normal metal - superconductor point contacts. It is found that both in paramagnetic and in antiferromagnetically ordered states (Tm- and Dy-compounds) the DOS has the BCS-like form while in Er- the dip in the temperature dependence of the gap is observed at the Neel temperature. In Ho-compound, the non-BCS-like form of DOS is observed in the temperature region where the incommensurate spin density waves exist along the axes a and c . Inelastic point-contact spectroscopy performed on these compounds shows that the low-frequency phonons are important for the superconducting state which are strongly mixed with the magnetic excitation branches in magnetic superconductors.



rate research

Read More

160 - K A Yates , L F Cohen , Zhi-An Ren 2008
The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial information such as the gap value and possibly the number of energy gaps involved. For the oxygen deficient NdFeAsO0.85 with a Tc of 45.5K, we show that there is clearly a gap value at 4.2K that is of the order of 7meV, consistent with previous studies on oxypnictides with lower Tc. Additionally, taking the spectra as a function of gold tip contact pressure reveals important changes in the spectra which may be indicative of more complex physics underlying this structure.
Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn$_5$ using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn$_5$, CeRhIn$_5$, and YbAl$_3$, each with different electron mass. In contrast with Au/CeCoIn$_5$ junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).
FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure have been measured versus temperature and magnetic field. Analyzing dV/dI within the extended two-gap Blonder-Tinkham-Klapwijk model allows to extract both the temperature and magnetic field dependence of the superconducting gaps. The temperature dependence of both gaps is close to the standard BCS behavior. Remarkably, the magnitude of the double-minimum structure gradually vanishes in magnetic field, while the minima position only slightly shifts with field indicating a weak decrease of the superconducting gaps. Analyzing the dV/dI(V) spectra for 25 point contacts results in the averaged gap values <Delta_L> = 1.8+/-0.4meV and <Delta_S>=1.0+/-0.2 meV and reduced values 2<Delta_L>/kTc=4.2+/-0.9 and 2<Delta_S>/kTc=2.3+/-0.5 for the large (L) and small (S) gap, respectively. Additionally, the small gap contribution was found to be within tens of percent decreasing with both temperature and magnetic field. No signatures in the dV/dI spectra were observed testifying a gapless superconductivity or presence of even smaller gaps.
72 - Yu. G. Naidyuk , K. Gloos 2017
We review application of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can be satisfied. We discuss existing theoretical models and identify new issues that have to be solved, especially when applying this method to investigate more complex superconductors. We will also demonstrate that some aspects of point-contact Andreev-reflection spectroscopy still need to be addressed even when investigating ordinary metals.
As charge carriers traverse a single superconductor ferromagnet interface they experience an additional spin-dependent phase angle which results in spin mixing and the formation of a bound state called the Andreev Bound State. This state is an essential component in the generation of long range spin triplet proximity induced superconductivity and yet the factors controlling the degree of spin mixing and the formation of the bound state remain elusive. Here we demonstrate that point contact Andreev reflection can be used to detect the bound state and extract the resulting spin mixing angle. By examining spectra taken from La1.15Sr1.85Mn2O7 single crystal - Pb junctions, together with a compilation of literature data on highly spin polarised systems, we show that the existence of the Andreev Bound State both resolves a number of long standing controversies in the Andreev literature as well as defining a route to quantify the strength of spin mixing at superconductor-ferromagnet interfaces. Intriguingly we find that for these high transparency junctions, the spin mixing angle appears to take a relatively narrow range of values across all the samples studied. The ferromagnets we have chosen to study share a common property in terms of their spin arrangement, and our observations may point to the importance of this property in determining the spin mixing angle under these circumstances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا