Do you want to publish a course? Click here

Polarons in Carbon Nanotubes

137   0   0.0 ( 0 )
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use ab initio total-energy calculations to predict the existence of polarons in semiconducting carbon nanotubes (CNTs). We find that the CNTs band edge energies vary linearly and the elastic energy increases quadratically with both radial and with axial distortions, leading to the spontaneous formation of polarons. Using a continuum model parametrized by the ab initio calculations, we estimate electron and hole polaron lengths, energies and effective masses and analyze their complex dependence on CNT geometry. Implications of polaron effects on recently observed electro- and opto-mechanical behavior of CNTs are discussed.

rate research

Read More

We have applied the quantum Monte Carlo method and tight-binding modelling to calculate the binding energy of biexcitons in semiconductor carbon nanotubes for a wide range of diameters and chiralities. For typical nanotube diameters we find that biexciton binding energies are much larger than previously predicted from variational methods, which easily brings the biexciton binding energy above the room temperature threshold.
We perform ab initio calculations of charged graphene and single-wall carbon nanotubes (CNTs). A wealth of electromechanical behaviors is obtained: (1) Both nanotubes and graphene expand upon electron injection. (2) Upon hole injection, metallic nanotubes and graphene display a non-monotonic behavior: Upon increasing hole densities, the lattice constant initially contracts, reaches a minimum, and then starts to expand. The hole densities at minimum lattice constants are 0.3 |e|/atom for graphene and between 0.1 and 0.3 |e|/atom for the metallic nanotubes studied. (3)Semiconducting CNTs with small diameters (d <~ 20 A) always expand upon hole injection; (4) Semiconducting CNTs with large diameters (d >~ 20 A) display a behavior intermediate between those of metallic and large-gap CNTs. (5) The strain versus extra charge displays a linear plus power-law behavior, with characteristic exponents for graphene, metallic, and semiconducting CNTs. All these features are physically understood within a simple tight-binding total-energy model.
Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.
77 - H. X. Han , n G. H. Li 2000
ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-linear intensity dependence of the emission bands on the excitation intensity, and negligible temperature dependence of the central position and the line shapes of the emission bands. Based upon theoretical analysis of the electronic band structures and optical transition, it is suggested that besides the electronic transitions across the fundamental gap, the transitions between pi and sigma conduction bands are the major source of the light emissions. A two-step transition mechanism is proposed.
Multiwalled carbon nanotubes are shown to be ballistic conductors at room temperature, with mean free paths of the order of tens of microns. These experiments follow and extend the original experiments by Frank et al (Science, 280 1744 1998) including in-situ electron microscopy experiments and a detailed analysis of the length dependence of the resistance. The per unit length resistance r < 100 Ohm/micron, indicating free paths l > 65 microns, unambiguously demonstrate ballistic conduction at room temperature up to macroscopic distances. The nanotube-metal contact resistances are in the range 0.1-1 kOhm micron. Contact scattering can explain why the measured conductances are about half the expected theoretical value of 2 G0 . For V>0.1V the conductance rises linearly (dG/dV~0.3 G0 /V) reflecting the linear increase in the density-of-states in a metallic nanotube above the energy gap. Increased resistances (r =2- 10 k Ohm/micron) and anomalous I-V dependences result from impurities and surfactants on the tubes.Evidence is presented that ballistic transport occurs in undoped and undamaged tubed for which the top layer is metallic and the next layer is semiconducting. The diffusive properties of lithographically contacted multiwalled nanotubes most likely result from purification and other processing steps that damage and dope the nanotubes thereby making them structurally and electronically different than the pristine nanotubes investigated here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا