Do you want to publish a course? Click here

Many-body interactions among adsorbed atoms and molecules within carbon nanotubes and in free space

79   0   0.0 ( 0 )
 Added by Milen K. Kostov
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper assesses the importance of three-body triple dipole interactions for quasi-one dimensional phases of He, Ne, H_2, Ar, Kr and Xe confined within interstitial channels or on the external surfaces of nanotube bundles. We find the substrate-mediated contribution to be substantial: for interstitial H_2 the well depth of the effective pair potential is reduced to approximately one half of its value in free space. We carry out ab initio calculations on linear and equilateral configurations of H_2 trimer and find that overlap interactions do not greatly change the DDD interaction in the linear configuration when the spacing is greater than about 3 A. However, the DDD interaction alone is clearly insufficient for the triangular configurations studied.



rate research

Read More

Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed close to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.
We present many-body textit{ab initio} calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle bandgaps and is combined with the Bethe-Salpeter equation to obtain the optical absorption spectrum. We find that the dependence of the electronic bandgaps on strain is more complex than previously predicted based on tight-binding models or density-functional theory. In addition, we show that the exciton energy and exciton binding energy depend significantly on strain, with variations of tens of meVs per percent strain, but that despite these strong changes the absorbance is found to be nearly independent of strain. Our results provide new guidance for the understanding and design of optomechanical systems based on carbon nanotubes.
74 - N. Mingo , Liu Yang , Jie Han 2001
We calculate the forces acting upon species adsorbed on a single wall carbon nanotube, in the presence of electric currents. We present a self consistent real space Green function method, which enables us to calculate the current induced forces from an ab-initio Hamiltonian. The method is applied to calculate the force on an adsorbed O atom on a (5,5) carbon nanotube, for different bias voltages and adsorption sites. For good contact regimes and biases of the order of Volts, the presence of a current can affect the potential energy surfaces considerably. Implications of these effects for the induced diffusion of the species are analyzed. The dependence of the force with the nanotube radius is studied. In addition, the magnitude of inelastic electron scattering, inducing vibrational heating, and its influence on the adsorbates drift, is commented.
Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.
Many-body interactions in monolayer transition-metal dichalcogenides are strongly affected by their unique band structure. We study these interactions by measuring the energy shift of neutral excitons (bound electron-hole pairs) in gated WSe$_2$ and MoSe$_2$. Surprisingly, while the blueshift of the neutral exciton, $X^0$, in electron-doped samples can be more than 10~meV, the blueshift in hole-doped samples is nearly absent. Taking into account dynamical screening and local-field effects, we present a transparent and analytical model that elucidates the crucial role played by intervalley plasmons in electron-doped conditions. The energy shift of $X^0$ as a function of charge density is computed showing agreement with experiment, where the renormalization of $X^0$ by intervalley plasmons yields a stronger blueshift in MoSe$_2$ than in WSe$_2$ due to differences in their band ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا